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Abstract 49	  

This is the second part of a three-part paper on North American climate in CMIP5 that 50	  

evaluates the 20th century simulations of intra-seasonal to multi-decadal variability and 51	  

teleconnections with North American climate. Overall, the multi-model ensemble does 52	  

reasonably well at reproducing observed variability in several aspects, but does less well 53	  

at capturing observed teleconnections, with implications for future projections examined 54	  

in part three of this paper. In terms of intra-seasonal variability, almost half of the models 55	  

examined can reproduce observed variability in the eastern Pacific and most models 56	  

capture the midsummer drought over Central America. The multi-model mean replicates 57	  

the density of traveling tropical synoptic-scale disturbances but with large spread among 58	  

the models. On the other hand, the coarse resolution of the models means that tropical 59	  

cyclone frequencies are under predicted in the Atlantic and eastern North Pacific. The 60	  

frequency and mean amplitude of ENSO are generally well reproduced, although 61	  

teleconnections with North American climate are widely varying among models and only 62	  

a few models can reproduce the east and central Pacific types of ENSO and connections 63	  

with US winter temperatures. The models capture the spatial pattern of PDO variability 64	  

and its influence on continental temperature and West coast precipitation, but less well 65	  

for the wintertime precipitation. The spatial representation of the AMO is reasonable but 66	  

the magnitude of SST anomalies and teleconnections are poorly reproduced. Multi-67	  

decadal trends such as the warming hole over the central-southeast US and precipitation 68	  

increases are not replicated by the models, suggesting that observed changes are linked to 69	  

natural variability.  70	  

 71	  
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1. Introduction 72	  

This is the second part of a three-part paper on the Climate Model 73	  

Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) model simulations for 74	  

North America. This second part evaluates the CMIP5 models in their ability to replicate 75	  

the observed variability of North American continental and regional climate, and related 76	  

climate processes. The first part (Sheffield et al., 2012) evaluates the representation of the 77	  

climatology of continental and regional climate features. The third part (Maloney et al., 78	  

2012) describes the projected changes for the 21st century.  79	  

The CMIP5 provides an unprecedented collection of climate model output data 80	  

for the assessment of future climate projections as well as evaluations of climate models 81	  

for contemporary climate, the attribution of observed climate change and improved 82	  

understanding of climate processes and feedbacks. As such, these data contribute to the 83	  

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), and 84	  

other global, regional and national assessments. 85	  

The goal of this study is to provide a broad evaluation of CMIP5 models in their 86	  

depiction of North American climate variability. It draws from individual work by 87	  

investigators within the CMIP5 Task Force of the US National Oceanic and Atmospheric 88	  

Administration (NOAA) Modeling Analysis and Prediction Program (MAPP) and is part 89	  

of a Journal of Climate special collection on North America in CMIP5. We draw from 90	  

individual papers within the special issue, which provide more detailed analysis that can 91	  

be presented in this synthesis paper.  92	  

We begin in Section 2 by describing the CMIP5, providing an overview of the 93	  

models analyzed, the historical simulations and the general methodology for evaluating 94	  
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the models. Details of the main observational datasets to which the climate models are 95	  

compared are also given in this section. The next 5 sections focus on different aspects of 96	  

North American climate variability, organized by the time scale of the climate feature. 97	  

Section 3 covers intraseasonal variability with focus on variability in the eastern Pacific 98	  

Ocean and summer drought over the southern US and Central America. Atlantic and east 99	  

Pacific tropical cyclone activity is evaluated in Section 4. Interannual climate variability 100	  

is assessed in Section 5. Decadal variability and multi-decadal trends are assessed in 101	  

Sections 6 and 7, respectively. Finally, the results are synthesized in Section 8. 102	  

 103	  

2. CMIP5 Models and Simulations 104	  

2.1. CMIP5 Models  105	  

We use data from multiple model simulations of the “historical” scenario from the 106	  

CMIP5 database. The CMIP5 experiments were carried out by 20 modeling groups 107	  

representing more than 50 climate models with the aim of further understanding past and 108	  

future climate change in key areas of uncertainty (Taylor et al., 2012). In particular, 109	  

experiments have been focused on understanding model differences in clouds and carbon 110	  

feedbacks, quantifying decadal climate predictability and why models give different 111	  

answers when driven by the same forcings. The CMIP5 builds on the previous phase 112	  

(CMIP3) experiments in several ways. Firstly a greater number of modeling centers and 113	  

models have participated. Secondly, the models are more comprehensive in terms of the 114	  

processes that they represent and are run at higher spatial resolution, therefore hopefully 115	  

resulting in better skill in representing current climate conditions and reducing 116	  

uncertainty in future projections. Table 1 provides an overview of the models used. The 117	  
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specific models used vary for each individual analysis because of data availability at the 118	  

time of this study, and so the model names are provided within the results section where 119	  

appropriate. 120	  

 121	  

2.2. Overview of Methods 122	  

Data from the “historical” CMIP5 scenario are evaluated, which is a coupled 123	  

atmosphere-ocean mode simulation that is forced by historical estimates of changes in 124	  

atmospheric composition from natural and anthropogenic sources, volcanoes, greenhouse 125	  

gases and aerosols, as well as changes in solar output and land cover. Historical scenario 126	  

simulations were carried out for the period from the start of the industrial revolution to 127	  

near present: 1850-2005. Our evaluations are generally carried out for the last 30 years of 128	  

the simulations, depending on the type of analysis and the availability of observations. 129	  

For some analyses the only, or best available, data are from satellite remote sensing 130	  

which restricts the analysis to the satellite period, which is generally from 1979 onwards. 131	  

In other cases the observational data are very uncertain for particular regions and time 132	  

periods (for example, precipitation in high latitudes in the first half of the 20th century) 133	  

and this is noted in the relevant sub-section. For other analyses, multiple observational 134	  

datasets are available and are used to capture the uncertainty in the observations. The 135	  

observational datasets are summarized in Table 2 and further details of the datasets and 136	  

data processing are given in the relevant sub-sections and figure captions. Where the 137	  

comparisons go beyond 2005 (e.g. 1979-2008), data from the model RCP8.5 future 138	  

projection scenario simulation (as this is regarded as closest to the business as usual 139	  

trajectory) are appended to the model historical time series. About half the models have 140	  
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multiple ensemble members, but we select the first ensemble member for simplicity and 141	  

discuss the variability in the results across the ensemble where appropriate. 142	  

 143	  

3. Tropical Intraseasonal Variability 144	  

3.1. MJO-related variability over the eastern Pacific and adjoining regions 145	  

It has been well documented that convection over the eastern Pacific (EPAC) 146	  

ITCZ and neighboring areas is characterized by pronounced intraseasonal variability 147	  

(ISV) during boreal summer (e.g., Knutson and Weickmann, 1987; Kayano and Kousky, 148	  

1999; Maloney and Hartmann, 2000a; Maloney and Esbensen, 2003, 2007; de Szoeke 149	  

and Bretherton, 2005; Jiang and Waliser, 2008, 2009, 2011). ISV over the EPAC exerts 150	  

broad impacts on regional weather and climate phenomena, including tropical cyclone 151	  

activity over the EPAC and the Gulf of Mexico, the summertime gap wind near the Gulfs 152	  

of Tehuantepec and Papagayo, the Caribbean Low-Level Jet and precipitation, the mid-153	  

summer drought over Central America and Mexico, and the North American monsoon 154	  

(e.g., Magana et al., 1999; Maloney and Hartmann, 2000b; Maloney and Hartmann, 155	  

2000a; Maloney and Esbensen, 2003; Lorenz and Hartmann, 2006; Serra et al., 2010; 156	  

Martin and Schumacher, 2010).  157	  

 Here, model fidelity in representing ISV over the EPAC and Intra-America Sea 158	  

(IAS) region is assessed by analyzing daily output of rainfall and 850hPa winds from 159	  

eighteen CMIP5 models. Figure 1 displays a Taylor diagram for summer mean (May-160	  

September) precipitation from the CMIP5 models over the EPAC domain (150oW-80oW; 161	  

5oS-30oN) compared to the TMPA precipitation. While the two HadGEM models 162	  

(HadGEM2-CC and HadGEM2-ES) display the highest pattern correlations (~0.93), the 163	  
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MRI-CGCM3 show the smallest RMS due to its better skill in simulating the spatial 164	  

standard deviations of summer mean rainfall over the EPAC. In addition, four models 165	  

(MPI-ESM-LR, CSIRO-MK3-6-0, CanESM2, and CNRM-CM5) also exhibit relatively 166	  

better pattern correlations than other models.    167	  

 The leading ISV modes over the EPAC based on observed and simulated rainfall 168	  

fields are identified using a complex empirical orthogonal function (CEOF) approach 169	  

(Maloney et al., 2008). CEOF analyses were applied to 30-90-day band-pass filtered 170	  

daily rainfall anomalies and the spatial amplitude and phase for the first CEOF mode 171	  

(CEOF1) based on TMPA are illustrated in Figures 2a and 2b. A single ensemble 172	  

member was used for each model for 1981-2005. The TMPA data are available for a 173	  

shorter time period (13 years) but the sensitivity of the results to different sample sizes 174	  

(based on data from a selected model) was found to be small. Similar to Maloney et al. 175	  

(2008), the maximum amplitude of the observed rainfall CEOF1 occurs over the far 176	  

eastern part of the EPAC. Figure 2b illustrates the pattern of spatial phase of observed 177	  

rainfall CEOF1. In agreement with previous studies, the observed leading ISV mode 178	  

associated with the CEOF1 largely exhibits an eastward propagation, while a northward 179	  

component is also evident (e.g., Jiang and Waliser, 2008; Maloney et al., 2008; Jiang et 180	  

al., 2011).  181	  

 Next, the fidelity of the CMIP5 models in simulating the leading EPAC ISV 182	  

mode is assessed by calculating pattern correlations of the simulated rainfall CEOF1 183	  

against observations. To increase sampling, spatial patterns of rainfall anomalies 184	  

associated with the CEOF1 based on both observations and model simulations are 185	  

derived at two quadratic phases by multiplying the CEOF1 amplitude by the Cosine and 186	  
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Sine of spatial phase at each grid point, respectively. The pattern correlations are then 187	  

calculated at both of these two quadratic phases. A final pattern correlation for a 188	  

particular model is derived by averaging these two pattern correlation coefficients. Figure 189	  

2c illustrates pattern correlations in depicting the CEOF1 rainfall pattern for each model 190	  

simulation versus domain averaged CEOF1 amplitude relative to observations, which 191	  

provide measures of model performance of variability in space and time, respectively. A 192	  

majority of the CMIP5 models tend to underestimate the amplitude of the leading EPAC 193	  

ISV mode associated with the rainfall CEOF1, except CNRM-CM5, MIROC5, MPI-194	  

ESM-LR, and HadGEM2-CC and HadGEM2-ES. Among the eighteen models examined, 195	  

eight models exhibit relative higher pattern correlations (> 0.75). 196	  

 The models with relative better skill in representing the leading EPAC ISV mode  197	  

also largely exhibit better skill for summer mean rainfall (cf. Fig. 1 and Fig. 2c) and 198	  

850hPa wind patterns (not shown). A common feature among the more skillful models is 199	  

the presence of westerly or very weak easterly mean low-level winds over the EPAC 200	  

warm pool region, as in the observations. Most of the models with relatively lower skill 201	  

exhibit a stronger easterly summer mean flow (> 4 m/s). This suggests that realistic 202	  

representation of the mean state could be crucial for improved simulations of the EPAC 203	  

ISV, which is in agreement with a recent study by Rydbeck et al. (2012), and has also 204	  

been discussed for MJO simulations over the western Pacific and Indian Ocean (e.g., Kim 205	  

et al., 2009). One hypothesis is that a realistic mean state produces the correct sign of 206	  

surface flux anomalies relative to intraseasonal precipitation, which helps to destabilize 207	  

the local intraseasonal disturbance (e.g. Maloney and Esbensen, 2005). Extended 208	  

analyses of the EPAC ISV in CMIP5 models is given in Jiang et al. (2012). 209	  
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 210	  

3.2. Mid-summer Drought over Central America 211	  

The rainy season in Central America and southern Mexico spans roughly May 212	  

through October. For most of the region, the precipitation climatology features maxima in 213	  

June and September and a period of reduced rainfall during July-August known as the 214	  

midsummer drought (MSD; Portig et al., 1961, Magaña et al., 1999). The MSD is regular 215	  

enough to be known colloquially and plays an important role in farming practices 216	  

(Osgood et al., 2009). A previous assessment of CMIP3 model performance at simulating 217	  

the MSD and future projections (Rauscher et al., 2008) suggested that many models are 218	  

capable of simulating the MSD despite an overall dry bias, and that the MSD is projected 219	  

to become stronger with an earlier onset. In this section, the CMIP5 performance at 220	  

simulating summertime precipitation and the MSD is evaluated. We evaluate 23 CMIP5 221	  

models against the TMPA, GPCP and UNAM observational datasets. A simple algorithm 222	  

for detecting and quantifying the climatological MSD is used that does not assume a 223	  

priori which months are maxima and which months constitute the MSD (Karnauskas et 224	  

al., 2012). 225	  

Figure 3 shows the observational and CMIP5 estimates of the MSD and highlights 226	  

the large uncertainties in its spatial distribution among observational datasets, The 227	  

CMIP5 MME does reasonably well at representing the essence of the MSD over much of 228	  

the Inter-Americas region. The maximum strength of the MSD in the MME is found just 229	  

offshore of El Salvador and represents a midsummer precipitation minimum that is ~2.5 230	  

mm/day less than the early- and late-summer peaks. Significant differences in the 231	  

location and strength of the MSD between the various observational data sets preclude a 232	  
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definitive evaluation of the CMIP5 MME, but it is clear that the strength of the MSD is 233	  

underestimated in some regions, including along the Pacific coast of Central America, the 234	  

western Caribbean, the major Caribbean islands and Florida. Figure 3 also shows the 235	  

MME standard deviation and a histogram of the spatial correlations of individual models 236	  

with the MME mean. The largest uncertainties are collocated with the regions of largest 237	  

magnitude of the MSD indicating that much of the model disagreement is in the 238	  

magnitude. Several models stand out as outliers in representing the spatial distribution of 239	  

the MSD relative to the MME mean (Table 3), such as MIROC-ESM and MIROC-ESM-240	  

CHEM, whilst the Hadley Center models do particularly well. 241	  

 242	  

4. East Pacific and Atlantic tropical storm track and cyclone activity 243	  

 244	  

4.1. Tropical Storm Track 245	  

The density of traveling synoptic-scale disturbances across the Tropics, referred 246	  

to in the literature as the tropical storm track (e.g. Thorncroft and Hodges 2001; Serra et 247	  

al. 2008; Serra et al. 2010), is examined in this section. These systems serve as precursors 248	  

to a majority of tropical storms and hurricanes in the Atlantic and eastern North Pacific 249	  

and their frequency at 850 hPa over Africa and the eastern Atlantic has been shown to be 250	  

positively correlated with Atlantic hurricane activity (Thorncroft and Hodges 2001). As 251	  

global models better resolve these systems than tropical cyclones, they provide an 252	  

advantage over direct tracking of tropical cyclones to assess model tropical storm activity 253	  

(see Section 4.2). As in Serra et al. (2010), the tropical storm track density is calculated 254	  

based on the method of Hodges (1995; 1999) using smoothed, 6-hourly, 850 hPa relative 255	  
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vorticity. Only positive vorticity centers with a minimum threshold of 0.5x10-6 s-1 that 256	  

persist for at least 2 days and have tracks of at least 1000 km in length are included in the 257	  

analysis. This method primarily identifies westward moving disturbances such as easterly 258	  

waves (e.g. Serra et al., 2010), although more intense storms that could potentially reach 259	  

hurricane intensity are not excluded. We analyze a single ensemble member from nine 260	  

CMIP5 models and compared the track statistics to the ERA-Interim (Figure 4, top). 261	  

These models were selected based on whether the 6-hourly pressure level data were 262	  

available at the time of the analysis. Mean track strength, the mean of the smoothed 850 263	  

hPa vorticity along the track, is also examined (Figure 4, bottom).  264	  

The multi-model mean track density is in good agreement with ERA-Interim, 265	  

however significant differences are seen with the individual models. The most apparent 266	  

discrepancies are with the BCC-CSM1-1, CanESM2 and CCSM4 models, which strongly 267	  

overestimate activity across the East Pacific and suggest a more longitudinally oriented 268	  

track (CanESM2 and CCSM4) shifted south from what is observed. BCC-CSM1-1, 269	  

HadGEM2-ES and MIROC5 underestimate tracks in the West Atlantic, while GFDL-270	  

ESM2M underestimates tracks throughout the region except near 130°W. MPI-ESM-LR 271	  

also underestimates tracks across the region as well as shifts their location southward. 272	  

The track density maximum off the west coast of Mexico is best captured by HadGEM2-273	  

ES, while the overall smallest magnitude differences are seen with CNRM-CM5. The 274	  

multi-model mean track strength maximum in the East Pacific lies along the west coast of 275	  

Mexico similar to ERA-Interim, however it is broader in scale and of larger magnitude 276	  

than the observations (Figure 4, bottom). On the other hand, the multi-model mean 277	  

strength in the Gulf of Mexico and West Atlantic along the east coast of the US is 278	  
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strongly underestimated compared to ERA-Interim. Unlike for track density, these biases 279	  

are fairly consistent among the models, with the exception of BCC-CSM1.1, which 280	  

strongly overestimates mean strength across the region.. 281	  

To better understand the biases in mean track density and strength we examine the 282	  

spatial correlations of 850 hPa and 500 hPa winds and heights, as well as track density 283	  

and strength with the ERA-Interim reanalyses. While all nine models have relatively 284	  

good spatial correlations in the wind components and heights at 500 hPa (not shown), 285	  

there is a wide spread in performance at the 850 hPa level that corresponds reasonably 286	  

well with the rankings for the combined track density and strength correlations (Table 3). 287	  

In particular, the top two models for the combined 850 hPa wind and height correlations 288	  

(CNRM-CM5 and HadGEM2-ES) are also among the highest ranked for the combined 289	  

track density and strength correlations.  On the other hand, CanESM2 has a high ranking 290	  

in the combined 850 hPa index but is one of the poorer models with respect to track 291	  

density and spatial correlations, suggesting that there are other important factors 292	  

contributing to the track statistics than just the large-scale low-level heights and winds 293	  

across the region. 294	  

 295	  

4.2. Tropical Cyclones in the North Atlantic and Eastern North Pacific 296	  

It is well known since the 1970s that climate models are able to simulate tropical 297	  

cyclone-like storms  (e.g. Manabe et al., 1970; Bengtsson et al., 1982), which are 298	  

generally formed at the scale of the model grid when conditions are unstable enough and 299	  

other factors, such as vertical wind shear, are favorable. As the resolution of the climate 300	  

models increases, the modeled storm characteristics become more realistic (e.g. Zhao et 301	  
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al., 2009). Analysis of CMIP3 models showed that the tropical cyclone-like storms 302	  

produced still had many biases common of low-resolution models (Walsh et al., 2010). 303	  

Therefore, various dynamical and statistical techniques for downscaling tropical cyclone 304	  

activity using only the CMIP3 large-scale variables have been employed (Emanuel et al., 305	  

2008; Knutson et al., 2008). Recent studies suggest that when forced by observed SSTs 306	  

and sea-ice concentration, a global atmospheric model with a resolution ranging from 50 307	  

 to 20km can simulate many aspects of tropical cyclone (TC)/hurricane frequency 308	  

variability for the past few decades during which reliable observations are available (e.g., 309	  

Oouchi et al. 2006; Bengtsson et al. 2007; Zhao et al. 2009). The success is not only a 310	  

direct evaluation of model capability but also an indication of the dominant role of SST 311	  

variability on TC/hurricane frequency variability. When assuming a persistence of SST 312	  

anomalies, some of the models were also shown to exhibit significant skill in hurricane 313	  

seasonal forecast (e.g., Zhao et al. 2010; Vecchi et al. 2011).  314	  

Tropical storms and cyclones in this study are identified using the tracking 315	  

method of Camargo and Zebiak (2002), which uses low-level vorticity, surface winds, 316	  

surface pressure, and atmospheric temperature, and considers only warm core storms. 317	  

The method uses model-dependent (and resolution) thresholds and storms have to last at 318	  

least two days. Only a subset of the tropical disturbances examined in the previous 319	  

section will intensify enough to be identified by this tracking method and the percentage 320	  

that this occurs will vary among different models. As will be shown, the CMIP5 standard 321	  

models have trouble simulating the number of tropical cyclones, which can be attributed 322	  

in part to their coarse resolution. Therefore, we also show results from the GFDL high-323	  

resolution model. 324	  
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TC type structures were tracked in five models for 1950-2005. We compare with 325	  

observations from best-track datasets of the National Hurricane Center (Figure 5). The 326	  

number of TCs in all models is much lower than in observations, which is common to 327	  

many low-resolution global climate models (e.g. Camargo et al., 2005; 2007). The 328	  

HadGEM2-ES has the largest low bias and the MPI-ESM-LR model has the most 329	  

realistic tracks in the Atlantic basin. The MRI-CGCM3 model tracks in the Atlantic are 330	  

mostly in the subtropical region, with very few storms in the deep tropics. In contrast, in 331	  

the eastern North Pacific the MRI-CGCM3 has storm activity too near the equator. In the 332	  

eastern North Pacific, very few storms (in all models) have westward tracks. The models 333	  

seem to have an easier time in producing storms that are in the northwestward direction 334	  

parallel to the Central American coast. 335	  

Figure 6 shows the mean number of TCs per month for the North Atlantic and 336	  

eastern North Pacific. In some cases, the models produce too many storms in the off-337	  

season, while all models produce too few storms in the peak season. The bottom panels 338	  

show the spread of the number of storms per year, emphasizing the low number of storms 339	  

per year in all models. The highest resolution model MRI-CGCM3 (1.1o x 1.1o) has the 340	  

least bias relative to the observations and the highest bias is for the coarsest resolution 341	  

model (GFDL-ESM2M, 2.5o x 2.0o). However, resolution cannot explain the rankings for 342	  

all models, with the HadGEM2-ES and MPI-ESM-LR models having relatively large and 343	  

small biases, respectively, despite both having intermediate resolutions. The model 344	  

dynamical core, convection scheme and their interactions are other factors that have been 345	  

shown to be important (Camargo, 2013).	   Examination of variability across ensemble 346	  
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members in producing tropical cyclones was carried out for five member runs of the 347	  

MRI-CGCM3 model (not shown) but was much less than among different models. 348	  

Figure 7 shows results for the GFDL C180HIRAM model, which has a higher-349	  

resolution (~50km) than the standard coupled GFDL-CM3 model and differs in some 350	  

aspects of the physics such as the convection scheme. The model was run for a CMIP5 351	  

time slice experiment forced by observed inter-annually and seasonally varying SSTs and 352	  

sea-ice concentration from the HadISST data-set (Held et al., 2013). The tracking 353	  

algorithm of Zhao et al. (2009) was used to identify TCs with near surface wind speed 354	  

reaching hurricane intensity. The model reproduces the observed statistics with the ratio 355	  

of observed to model variances of interannual variability in both the N. Atlantic and E. 356	  

Pacific not statistically different from one, according to an F-test at the 95% significance 357	  

level. Figure 7 also shows that the model captures the observed seasonal cycle in both the 358	  

N. Atlantic and E. Pacific. The model can also reproduce the observed seasonal cycle in 359	  

the N. Atlantic and E. Pacific as well as the observed year-to-year variation of annual 360	  

hurricane counts and the decadal trend for both basins for this period (Zhao et al. 2009; 361	  

Held et al. 2013). The quality of the model’s present-day simulation increases our 362	  

confidence in the future projections, although the uncertainty in the projections is 363	  

dominated by uncertainty in projected changes in SST boundary conditions across the 364	  

CMIP5 standard resolution models (Maloney et al., 2013). 365	  

 366	  

5. Interannual to decadal variability 367	  

 368	  

5.1. El Niño-Southern Oscillation (ENSO) 369	  
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The ENSO is the most important driver of global climate variability on inter-370	  

annual time scales. It impacts many regions worldwide through climate teleconnections 371	  

(Ropelewski and Halpert, 1987), which link the tropical Pacific to higher latitudes 372	  

through shifts in mid-latitude weather patterns. The impact of ENSO on North American 373	  

climate is felt most strongly in the wintertime, with El Niño events bringing warmer 374	  

temperatures to much of the northern part of the continent and wetter conditions in the 375	  

southern US and northern Mexico. La Niña events tend to bring drier weather to the 376	  

southern US. Evaluation of the ability of CMIP5 models to simulate ENSO is carried out 377	  

for several aspects of ENSO variability and for teleconnections with North American 378	  

climate.  379	  

 380	  

A. Evaluation of ENSO teleconnections 381	  

We examine how well the historical simulations of CMIP5 models reproduce the 382	  

composite near-surface air temperature (SAT) and precipitation patterns over North 383	  

America during El Niño and La Niña episodes. In both model and observed data, we 384	  

define ENSO episodes similarly to the Climate Prediction Center (CPC). A monthly 385	  

ENSO index is calculated from detrended and high-pass filtered SSTs over the Niño3.4 386	  

region (5oS – 5oN, 170oW - 120oW) from ERSSTv3b observations and CMIP5 models. 387	  

An El Niño (La Niña) episode is defined as any sequence of months where the three-388	  

month running mean Niño3.4 SST, is greater than 0.5oC (less than -0.5oC) for at least five 389	  

consecutive three-month running seasons.  390	  

In observations approximately 90% of El Niño and 89% of La Niña episodes 391	  

feature peak amplitudes in fall or winter. In the CMIP5 ensemble of the historical 392	  
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simulations, however, only 68% of El Niño and 65% of La Niña episodes have peak 393	  

amplitudes in fall or winter, although several of the models (CanESM2, CNRM-CM5, 394	  

HadCM3 and NorESM1-M) do have fall/winter peak frequencies exceeding 80% for both 395	  

El Niño and La Niña episodes. This finding suggests that CMIP5 models do not fully 396	  

reproduce the phase-locking of ENSO to the seasonal cycle, a deficiency noted in CMIP3 397	  

models as well (Guilyardi et al. 2009). The following analysis focuses on those episodes 398	  

that do peak in fall or winter. In the ensemble mean, the frequency of ENSO episodes and 399	  

the mean peak amplitude are similar to observed values (not shown). 400	  

Because the dynamics of extratropical ENSO teleconnections are tied to upper 401	  

tropospheric processes, and because these teleconnections are strongest during boreal 402	  

winter, we examine how well CMIP5 models reproduce the DJF composite 300hPa 403	  

geopotential height patterns in the NCEP/NCAR reanalysis. In addition, we attempt to 404	  

identify what characteristics distinguish higher from lower performance models, where 405	  

performance is based on the El Niño (La Niña) composites of all height fields for which 406	  

the detrended Niño 3.4 SST anomaly is greater than 0.5ᵒC (less than -0.5ᵒC). The high 407	  

performance models are defined as those with a pattern correlation that exceeds 0.6 and 408	  

an RMS difference less than 13 m between the model and observed composites for both 409	  

El Niño and La Niña (Figure 8). This subjective partitioning is used as a means of 410	  

discerning general properties that distinguish higher from lower performance models. 411	  

Overall, ten (eleven) models are characterized as high (low) performance based on these 412	  

criteria.  413	  

Figure 9 shows the composites of 300 hPa geopotential height, SAT, 414	  

precipitation, and tropical SST for El Niño. The corresponding composites for La Niña 415	  
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(not shown) are quite similar but of opposite sign. The higher performance ensemble 416	  

performs rather well in capturing the basic El Niño geopotential height, SAT, and 417	  

precipitation teleconnections over the North Pacific and North America, with the 418	  

exception being the failure to capture the negative precipitation anomaly in the Tennessee 419	  

and Ohio Valleys. The lower performance ensemble features a much weaker 420	  

teleconnection pattern and an Aleutian low anomaly that is shifted about 10ᵒ too far west.  421	  

The composite El Niño SST anomalies (Figs. 2k,l), however, are quite similar.   422	  

To gain insight into possible reasons for the discrepancies between the higher and 423	  

lower performance ensemble, Figure 10a shows composite differences in tropical 424	  

precipitation. The higher performance ensemble exhibits much higher precipitation 425	  

anomalies in the central and eastern equatorial Pacific Ocean, which suggests that the 426	  

enhanced convection in these regions could help to explain the stronger and eastward 427	  

shifted teleconnection pattern relative to the lower performance ensemble.  This enhanced 428	  

convection may be explained in part by stronger SST anomalies in the higher 429	  

performance ensemble (Fig. 10b), but most of the large precipitation differences actually 430	  

occur where the SST anomaly differences are quite small. Instead, a more significant 431	  

difference appears to be the difference in SST climatology, as the lower performance 432	  

ensemble exhibits climatological SSTs more than 1ᵒC cooler than the high performance 433	  

ensemble over the eastern Pacific cold tongue region (Fig. 10c). Indeed, the lower 434	  

performance ensemble features a negative SST climatology bias of more than 1.5ᵒC in 435	  

the equatorial central Pacific (Fig. 10e), where the El Niño convection anomalies 436	  

generally are strongest.  The bias for the higher performance ensemble in this region (Fig. 437	  

10d) is much weaker. Thus, in the lower performance ensemble, the convection 438	  
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anomalies in the eastern Pacific likely are too insensitive to ENSO SST anomalies 439	  

because the climatological SSTs are too low. This finding suggests that simulation of 440	  

ENSO teleconnections in some climate models might benefit from improving 441	  

climatalogical SSTs rather than interannually varying ENSO SST anomalies. As 442	  

discussed in Li and Xie (2012), tropical SST biases in CMIP models are linked to model 443	  

errors in cloud cover and ocean dynamics, with equatorial cold tongue biases closely tied 444	  

to errors in thermocline depth and upwelling. 445	  

 446	  

B. East Pacific/Central Pacific ENSO and Teleconnections with US Winter Surface Air 447	  

Temperature 448	  

It has been increasingly recognized that different types of ENSO occur in the 449	  

tropical Pacific (e.g. Wang and Weisberg, 2000; Trenberth and Stepaniak, 2001; Larkin 450	  

and Harrison, 2005; Yu and Kao, 2007; Ashok et al., 2007; Kao and Yu, 2009; Kug et al., 451	  

2009). Two particular types that have been emphasized are the Eastern-Pacific (EP) type 452	  

that produces SST anomalies near the South America coast and the Central-Pacific (CP) 453	  

type that produces anomalies near the international dateline. While the EP ENSO is the 454	  

conventional type of ENSO, the CP ENSO has gradually increased its occurrence during 455	  

the past few decades (e.g. Lee and McPhaden, 2010). Recent observational studies have 456	  

indicated that the impacts produced by these two types of ENSO on North American 457	  

climate can be different (e.g., Mo 2011; Yu et al. 2012; Yu and Zhou, 2013). Here the 458	  

ENSO teleconnection over the US simulated in the CMIP5 models are further examined 459	  

according to the ENSO type. Following Kao and Yu (2009) and Yu and Kim (2010), a 460	  

regression-EOF analysis is used to identify the CP and EP types from monthly SSTs. The 461	  
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SST anomalies regressed with the Niño1+2 SST index were removed before the EOF 462	  

analysis was applied to obtain the spatial pattern of the CP ENSO. Similarly, we 463	  

subtracted the SST anomalies regressed with the Niño4 SST index before the EOF 464	  

analysis was applied to identify the leading structure of the EP ENSO. The principal 465	  

components of the leading EOF modes represent the ENSO strengths and are defined as 466	  

the CP ENSO index and the EP ENSO index. The observed winter (DJF) SAT anomalies 467	  

regressed to theses two indices are different over the US (Figure 11a,b) with a warm 468	  

northeast to cold southwest pattern for the EP El Niño and a warm northwest to cold 469	  

southeast pattern for the CP El Niño. Adding these two impact patterns together results in 470	  

a pattern that resembles the well-known warm-north, cold-south pattern of El Niño 471	  

impact.. The robustness of these two different impact patterns has been examined in Yu 472	  

et al. (2012) using numerical model experiments and case studies. They showed that 473	  

impact patterns similar to those shown in Figure 11 can be reproduced in two ensemble 474	  

AGCM experiments forced separately by the EP and CP ENSO SST anomalies (see their 475	  

Fig. 1). The regressed impact patterns can also be identified in US winter temperature 476	  

anomalies during the four strongest EP El Niño events (i.e., 1997-98, 1982-83, 1972-73, 477	  

and 1986-87) and three of the four strongest CP El Niño events (i.e., 2009-10, 1957-58, 478	  

and 2002-2003). 479	  

We repeated the EOF and regression analyses to evaluate how well the CMIP5 480	  

models reproduce the different US impacts to the two types of ENSO. The regressed 481	  

winter SAT anomaly patterns calculated from 22 CMIP5 models are shown in Figure 11. 482	  

The observed patterns are well simulated by some models, such as the MIROC5 and 483	  

MRI-CGCM3 for the EP ENSO and the NorESM1-M and HadGCM2-ES for the CP 484	  
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ENSO. However, some models show an impact pattern that is almost opposite to that 485	  

observed, such as HadCM3 for the CP ENSO and INMCM4 for the EP ENSO. To 486	  

quantify how well the impact patterns are simulated, pattern correlation coefficients were 487	  

calculated between the model regressed patterns and the NCEP regressed patterns. As 488	  

shown in Figure 12a, there is a cluster of eleven CMIP5 models (CSIRO-Mk3-6-0, 489	  

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, IPSL-490	  

CM5-MR, MIROC5, MPI-ESM-LR, MPI-ESM-P, NorESM1-M) that have higher pattern 491	  

correlation coefficients for both the EP ENSO and the CP ENSO than the rest of the 492	  

models. This group of the CMIP5 models is considered as the models whose regressed 493	  

US winter temperature patterns are close to the observed patterns for the two types of 494	  

ENSO. We also examine in Figure 12b the intensities of the simulated EP and CP ENSO 495	  

events, which are determined using an EOF-regression method (Yu and Kim, 2010; Kim 496	  

and Yu, 2012). Models with realistically strong events are identified using the lower limit 497	  

of the 95% significance interval of the observed intensities (using an F-test) as the criteria 498	  

(0.78˚C for EP and 0.51˚C for CP). Based on these criteria, ten of the 22 models simulate 499	  

both EP and CP ENSO events with realistically strong intensities. Interestingly, nine of 500	  

these models are also among the eleven models that realistically produce US winter 501	  

temperature patterns for the two types of ENSO. Therefore, at least nine out of 22 models 502	  

can more realistically produce the two types of ENSO with higher intensities and their 503	  

different impacts on US winter temperatures: GFDL-CM3, GFDL-ESM2G, GFDL-504	  

ESM2M, HadGEM2-CC, HadGEM2-ES, MIROC5, MPI-ESM-LR, MPI-ESM-P, and 505	  

NorESM1-M). 506	  

 507	  
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C. ENSO warm/cold events asymmetry 508	  

ENSO asymmetry refers to the fact that the two phases of ENSO are not mirror 509	  

images of each other (Burgers and Stephenson, 1999). The asymmetry shows up in both 510	  

the surface and subsurface fields (Rodgers et al., 2004; Schopf and Burgman, 2006; Sun 511	  

and Zhang, 2006; Zhang et al., 2009). Causes for such an asymmetry are not yet clearly 512	  

understood, but accumulating evidence suggests that it is likely a consequence of 513	  

nonlinearity of ocean dynamics (Jin et al., 2003; Sun 2010, Liang et al., 2012). 514	  

Asymmetry is also linked to the time-mean effect of ENSO (Sun and Zhang, 2006; 515	  

Schopf and Burgman, 2006; Sun, 2010, Liang et al. 2012). Understanding the causes and 516	  

consequences of ENSO asymmetry may hold the key to understanding decadal variability 517	  

in the tropics and beyond (Rodgers et al., 2004; Sun and Yu, 2009, Liang et al., 2012). 518	  

Figure 13 shows the sum of the SST anomalies between the warm and cold phases of 519	  

ENSO from HadISST observations and CMIP5 models. The threshold value used for 520	  

defining the warm and cold phase anomalies is set as +0.5 oC and -0.5 oC respectively. 521	  

This sum has also been called the SST anomaly residual and has been a common measure 522	  

of the ENSO asymmetry in the SST field. All models underestimate the observed positive 523	  

SST residual (and therefore the asymmetry) over the eastern Pacific. Measured by the 524	  

skewness of Niño3 SST anomalies (which is a more rigorous measure of asymmetry), all 525	  

the models also underestimate the observed ENSO asymmetry (Figure 14). The figure 526	  

also shows that the stronger variability of ENSO (measured by variance) does not 527	  

guarantee a stronger asymmetry in ENSO (measured by skewness).  528	  

ENSO asymmetry remains a common bias in climate models that has continued 529	  

since CMIP3 (van Oldenborgh et al. 2005) with implications for simulating tropical 530	  
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decadal variability. The causes are of current debate, but recent results indicate that it is 531	  

related to the mean state and the excessive cold tongue in the models (De-Zheng Sun, 532	  

personal communication, 2013), which was also noted in CMIP3 models (Sun et al., 533	  

2012), although there is evidence that the mean state could in turn be determined by the 534	  

statistics of ENSO via non-linearities in the system (Sun and Zhang 2006, Sun 2010, 535	  

Liang et al. 2012, Sun et al. 2012, Ogata et al. 2012). On other hand, both the bias in the 536	  

mean state and the bias in the asymmetry may be a consequence of a more fundamental 537	  

reason: a weak thermal forcing relative to the dissipation (Sun, 2000; Liang et al. 2012). 538	  

Together, these results suggest that the coupled tropical system in the models is in a 539	  

different dynamical regime to reality (Sun and Bryan, 2010), also noted in terms of the 540	  

elevation of the variance of ENSO over the past 50 years that is not represented by the 541	  

models (Sun, 2010).  542	  

 543	  

5.2. Persistent droughts and wet spells over Great Plains and the southern-tier states  544	  

Persistent dry and wet summers are features of the US Great Plains and southern 545	  

US. We evaluate how the CMIP5 models describe the processes that cause such 546	  

persistent anomalies in terms of low-level circulation and moisture flux anomalies by 547	  

comparing with the NCEP-NCAR reanalysis. This complements the evaluations of the 548	  

average seasonal circulation in the region, such as the low-level southerly jet as shown in 549	  

part 1 of this paper (Sheffield et al., 2013). Persistent wet and dry summers are defined 550	  

by JJA precipitation anomalies averaged over the Great Plains region from 90º-105ºW 551	  

and 30º-50ºN during 1971-2000. Wet (dry) summers are identified as having normalized 552	  

JJA precipitation larger (smaller) than 0.6 (-0.6) standard deviation. The reanalysis data 553	  
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identify 8 wet and 7 dry summers in 1971-2000, and the models identify between 7 and 554	  

12 wet or dry events, depending on the model. We show the composites of vertically 555	  

integrated moisture from the surface to top of the troposphere, the 850hPa geopotential 556	  

height, and near surface winds at 925hPa for the wet and dry summers and their 557	  

differences for the reanalysis (Figure 15) and for a single model, CCSM4, as an example 558	  

(Figure 16). 559	  

Comparison of the two figures indicates some similarities but also very different 560	  

processes causing the persistent wet or dry summers. The integrated moisture fluxes in 561	  

both datasets indicate high moisture in an averaged cyclonic rotation in the troposphere in 562	  

persistent wet summers (Figs. 15a and 16a) but anticyclonic rotation in dry summers 563	  

(Figs. 15b and 16b) in the Great Plains. However, the sources of the moisture and the 564	  

low-level dynamic structure are quite different. For the reanalysis, the convergence of 565	  

moisture in the central Great Plains during wet summers results from southerly flow 566	  

anomalies in the enhanced subtropical high pressure system in the North Atlantic and 567	  

northerly flow anomalies in low pressure anomalies centered in the Midwest (Fig. 15d). 568	  

These anomalies suggest a frontal system along the depression from the Midwest to the 569	  

Southwest. A nearly reversed pattern of flow anomalies is shown during the dry summers 570	  

(Figs. 15e and 15f). The model simulations show a different pattern of flow anomalies 571	  

(Figs. 16d and e). In wet summers, the moisture is primarily from the east along the 572	  

easterly and southeasterly quadrants of a high pressure anomaly center in the Great Lakes 573	  

areas, instead of from the south as in the reanalysis result (Figs. 16a vs. 15a). In dry 574	  

summers, the model shows dry flows from the Mexican plateau off the Sierra Madre 575	  

Oriental in Mexico. These contrasts are shown in Fig. 16f. The other CMIP5 models also 576	  



	   26 

simulate different tropospheric circulation patterns from those in the reanalysis for both 577	  

wet and dry summers in the Great Plains.  578	  

Although the integrated moisture fluxes in the models resemble those in the 579	  

reanalysis estimates in wet and dry summers, the sources of moisture differ considerably, 580	  

suggesting that the models are not correctly representing the mechanisms that force 581	  

variability in the Great Plains. Controls on summertime Great Plains precipitation have 582	  

been found to depend strongly on moisture transport from the Gulf of Mexico via the 583	  

Great Plains low level jet (GPLLJ; e.g., Ruiz-Barradas and Nigam, 2006; Cook et al., 584	  

2008; Weaver and Nigam, 2008) whose variability in turn may be related to remote SST 585	  

forcing in the Pacific (e.g. Schubert et al., 2004; Ruiz-Barradas and Nigam, 2010, 586	  

McCabe et al., 2008) and Atlantic (e.g. Enfield et al., 2001, Sutton and Hodson, 2005; 587	  

McCabe et al., 2008) with contrasting anomalies in each basin associated with extreme 588	  

conditions in the Great Plains (e.g., Hoerling and Kumar 2003; Schubert et al. 2009). 589	  

Some of the models have shown improvement, compared to the CMIP3 models, in 590	  

simulating the GPLLJ and the seasonal transitions (see Sheffield et al. 2013), a result 591	  

largely attributable to the higher spatial resolution of CMIP5 models, but most models 592	  

struggle to represent observed teleconnections between precipitation and Atlantic SSTs 593	  

(see section 6). Even so, the transport of moisture transport is not the whole story and 594	  

local dynamic processes (e.g. Veres and Hu, 2013), and land-atmosphere feedbacks 595	  

(Ruiz-Barradas and Nigam, 2006), are important to initiate and further organize regional 596	  

circulations that can transform the moisture into precipitation. Notably, previous studies 597	  

focused on climate models find that they tend to over-estimate the role of recycled 598	  
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precipitation over advected moisture (e.g. Ruiz-Barradas and Nigam, 2006) for the Great 599	  

Plains with implications for the modeled precipitation variability. 600	  

 601	  

6. Decadal Variability 602	  

 603	  

6.1. Pacific Decadal Oscillation (PDO) and its influence on North American climate 604	  

On interdecadal timescales, variability in the tropical and extratropical North 605	  

Pacific, particularly that of the Pacific Decadal Oscillation (PDO), has significant 606	  

physical and ecological impacts over North America (Mantua et al. 1997, Higgins et al. 607	  

2000, Meehl et al. 2012). We examine the PDO and its relationships with N. American 608	  

temperature and precipitation for 21 CMIP5 models. We define the PDO as the leading 609	  

empirical orthogonal function of extended winter (November-April) monthly mean sea 610	  

surface temperature (SST) anomalies in the North Pacific poleward of 20oN (Zhang et al., 611	  

1997; Mantua et al., 1997) for 1900-1993, and subtract the monthly global mean SST. 612	  

We then calculate the PDO index by projecting monthly North Pacific SST anomalies 613	  

onto the PDO pattern for all available months and then standardizing the resulting time 614	  

series. Figure 17 illustrates the PDO patterns in both observations and the CMIP5 615	  

ensemble (see Table 5 for a list of models) obtained by regressing the unfiltered monthly 616	  

SST anomalies onto the PDO index for all calendar months. As in the CMIP3 models 617	  

(Oshima and Tanimoto, 2009; Furtado et al., 2011), the CMIP5 models reproduce the 618	  

basic PDO horseshoe SST pattern. The most notable difference is the westward shift of 619	  

the North Pacific center of action in models with respect to observations (Fig. 17c). The 620	  
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regions with the largest differences also correspond with regions of relatively high inter-621	  

model variability (Fig. 17d).  622	  

For each set of seasonal temperature and precipitation regressions, we calculate 623	  

the centered pattern correlations and RMS differences between the observed and CMIP5 624	  

model regressions (Table 5), Despite fairly low pattern correlations in many cases, for 625	  

most models and most seasons, the differences in the regression patterns are not 626	  

statistically significant. This may be due to a combination of small effective sample size, 627	  

large uncertainty in the regression coefficients, a relatively modest impact of the PDO on 628	  

seasonal SAT and precipitation, and the ability of the models to capture the general PDO 629	  

behavior during the winter and spring when the PDO impacts are strongest. In particular, 630	  

the full ensemble performs well in capturing the winter and spring PDO SAT patterns, 631	  

but substantial differences in the precipitation regressions are evident, particularly in 632	  

spring.   633	  

Figure 18 shows the DJF SAT and precipitation regressions in observations and 634	  

the CMIP5 ensemble. The CMIP5 models do rather well in capturing the PDO influence 635	  

on North American SAT, with positive (negative) SAT anomalies in northwest 636	  

(southeast) North America during the positive phase of the PDO. Almost all local 637	  

differences in the regression coefficients are not statistically significant. In contrast, the 638	  

CMIP5 models perform somewhat poorly in reproducing the precipitation patterns over 639	  

large parts of North America, although for high latitudes the observations are based on 640	  

very sparse station data, and especially before the 1950s (Zhang et al., 2000). Both 641	  

observations (Fig. 18b) and CMIP5 ensemble (Fig. 18d) produce a tripole pattern of 642	  

precipitation anomalies over the west coast of North America. Large differences, 643	  
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however, are found in eastern North America. In observations, the positive phase of the 644	  

PDO is associated with reduced wintertime precipitation in the Tennessee and Ohio 645	  

Valleys, northeastern U.S., and Southeastern Canada (Fig. 18b), but the CMIP5 ensemble 646	  

fails to discern this influence (Fig. 18d, f). Though of smaller magnitude, significant 647	  

differences also occur in central North America (Fig. 18f). In spring (MAM) the largest 648	  

differences in the precipitation regressions occur along the coast of British Columbia, 649	  

where observed regressions indicate positive anomalies but the CMIP5 ensemble 650	  

produces a pronounced negative anomaly (not shown). Both observations and the CMIP5 651	  

ensemble reproduce positive precipitation anomalies along the west coast and central 652	  

plains of the U.S. 653	  

 654	  

6.2. Atlantic Multidecadal Oscillation (AMO) 655	  

The Atlantic Multidecadal Oscillation (AMO) is an important mode of 656	  

multidecadal climate variability manifesting in North Atlantic SSTs (e.g., Kerr 2000; 657	  

Enfield et al. 2001). The AMO has significant regional and global climate associations, 658	  

such as northeast Brazilian and Sahel rainfall (e.g., Folland et al. 1986; Rowell et al. 659	  

1995; Wang et al. 2012), hurricane activity in the North Atlantic and the eastern North 660	  

Pacific (Goldenberg et al. 2001; Wang and Lee 2009), and North American and European 661	  

summer climate (Enfield et al. 2001; McCabe et al. 2004; Sutton and Hodson 2005). In 662	  

spite of its importance, the mechanism of the AMO is still unclear. Several studies have 663	  

indicated the role of variations in the Atlantic meridional overturning circulation 664	  

(AMOC) and associated heat transport fluctuations (Delworth and Mann 2000; Knight et 665	  

al. 2005). Some modeling studies indicate that solar variability and/or volcanoes are 666	  
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important (Hansen et al. 2005; Ottera et al. 2010), or that aerosols can be a primary driver 667	  

(Booth et al. 2012). A recent observational study shows that a positive feedback between 668	  

SSTs and dust aerosols in the North Atlantic via Sahel rainfall variability may be a 669	  

mechanism (Wang et al. 2012). 670	  

The AMO index is defined as the detrended North Atlantic SST during the 671	  

Atlantic hurricane season of June to November (JJASON) from the equator to 60°N, 672	  

75°W-5°W with the 11-year running mean (e.g., Enfield et al. 2001; Knight et al. 2005). 673	  

As shown in Figure 19a, the individual models show highly varying amplitudes and 674	  

phases, with a large spread across models. This is to be expected given that the AMO is 675	  

partly of internal origin. However, the potential influence of external forcings implies that 676	  

the models may simulate some of the variation. All models show the warming in the last 677	  

two decades when anthropogenic warming becomes influential. The MME mean tends to 678	  

follow the main variations in the earlier part of the record, albeit subdued because of 679	  

averaging across models, but fails to show the warm period during 1926-1965. Compared 680	  

to the CMIP3 results (Medhaug and Furevik, 2011), the CMIP5 simulation of the AMO 681	  

has generally improved, particularly after 1960. This may be due to higher resolution, 682	  

improved parameterizations and the addition of time evolving land cover. Results for 683	  

individual models (Table 6) indicate that the standard deviations are comparable to, or 684	  

slightly weaker than, the observations with typical amplitudes ranging from 0.09 to 685	  

0.19°C as compared to about 0.18°C in the observations, which is an improvement from 686	  

CMIP3 models (Ting et al., 2009).  687	  

The lagged autocorrelation of the AMO index for lags zero to 35 years (Fig. 19b) 688	  

shows that the models generally represent the quasi-periodic nature of the observed 689	  
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AMO, with the peak oscillation at 30-35 years in the observation, but generally shorter 690	  

for the models. The persistence in the AMO index as defined as the maximum time lag 691	  

when the autocorrelation first crosses the significance line at the 90% level, varies from 5 692	  

to 25 years in the models, implying the potential for predicting future SSTs (Corti et al., 693	  

2012; Kim et al., 2012). However, for most models the persistence is shorter (~12 years), 694	  

which is nevertheless an improvement over CMIP3 models which have an average 695	  

persistence of about 5 years (Medhaug and Furevik 2011). 696	  

The ability of the models to represent the AMO and its impact on precipitation 697	  

over North America is evaluated by regressing the AMO index on regional seasonal 698	  

precipitation and SSTs for 1901-1999. The results are shown for autumn in Figure 20 and 699	  

shown in more detail in Kavvada et al. (2013). The SST signature of the AMO is stronger 700	  

in autumn than in summer and this is reflected in its impact on central US precipitation in 701	  

observations (not shown). In both seasons the SST anomalies reach a maximum over the 702	  

mid Atlantic, over the sub-polar gyre region. The warm phase of the AMO induces 703	  

drying conditions over the central US and wet conditions over Florida and the US 704	  

northeast in both seasons, but with more intensity in autumn. However, there are 705	  

seasonally contrasting conditions along the Gulf of Mexico states where decreased 706	  

precipitation occurs in summer but increased precipitation occurs in autumn.  707	  

In general the models do not capture the SST seasonality of the AMO well. The 708	  

simulated SST anomalies are generally larger in summer than in autumn in the majority 709	  

of the models (not shown). While all models tend to place the maximum SST anomalies 710	  

over the mid Atlantic Ocean, they do not replicate the observed maximum south of 711	  

Greenland and its spatial structure. For example, CCSM4, GFDL-ESM and MIROC5 712	  
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emphasize anomalies over the Norwegian Sea; and GFDL-ESM, GISS-E2-R and 713	  

INMCM4 do not show a signal over the tropical Atlantic. The spatial correlation of the 714	  

anomalies (Table 7) shows higher correlations for HadGEM2-ES and GISS-E2-R, 715	  

although visually there are large discrepancies in the spatial patterns. 716	  

The precipitation impact of the AMO is a bigger challenge for the models (see 717	  

Table 7 for individual model spatial correlations for precipitation) and they generally fail 718	  

to represent the drier conditions over the central US and the wet conditions along the 719	  

coastal south Atlantic US states and southern Mexico. The initial drying over the south 720	  

central US in summer is shown by a few models (BCC-CSM1.1, HadGEM2-ES, IPSL-721	  

CM5A-LR and MRI-CGCM3) but the intensification of the drying into the autumn is not 722	  

replicated by most of the models. The wet conditions over the south Atlantic US states in 723	  

the autumn are captured by a few models, but to varying degrees of agreement and some 724	  

models show regressions of the opposite sign (e.g. GISS-E2-R and HadGEM2-ES) and 725	  

despite their high SST correlations. The increased precipitation over southern Mexico in 726	  

autumn is shown only by a handful of models (e.g. BCC-CSM1.1, CSIRO-MK3.6, IPSL-727	  

CM5A-LR and NorESM1-M).  728	  

Numerous studies have shown the importance of the AMO in generating 729	  

precipitation variability over the region (e.g. Enfield et al 2001, Sutton and Hodson 2005, 730	  

Wang et al. 2006, Schubert et al. 2009, Nigam et al. 2011), with a key role played by the 731	  

lower level circulation which modulates the Great Plains low-level jet and the 732	  

convergence/divergence of moisture fluxes (see section 5.2). Thus, given the differences 733	  

in the model simulated structure of the AMO SST footprint, their poor performance in the 734	  
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simulation of the hydroclimate impact over the central US is not surprising - a situation 735	  

which has not shown improvement since CMIP3 (Ruiz-Barradas et al. 2013). 736	  

 737	  

7. Multidecadal Trends 738	  

 739	  

7.1. Trends in Temperature and the ‘warming hole’ over the southeastern US  740	  

A unique of feature of US temperature change during the 20th century is the so-741	  

called “warming hole (WH)” observed in the southeastern US (Pan et al, 2004). While 742	  

the globe has warmed over the 20th century, the WH region experienced cooling, 743	  

especially in summer during the latter half of the century. Studies have attributed the 744	  

mechanisms for this abnormal cooling (lack of warming) trend to large-scale decadal 745	  

oscillations such as PDO and AMO (Robinson et al., 2002, Kunkel et al., 2006, Wang et 746	  

al., 2009; Weaver, 2012; Meehl et al., 2012) and  to regional scale hydrological processes 747	  

(Pan et al., 2004) and land surface interactions (Liang et at. 2007). Portmann et al. (2009) 748	  

speculated that secondary organic aerosols during the growing season could contribute to 749	  

the cooling in the WH region, while Christidis et al. (2010) emphasized the role of 750	  

internal climate variability.  751	  

 We evaluate whether the CMIP5 models show the warming hole as a forced 752	  

response in Figure 21, which shows the annual and seasonal trends, in near surface air 753	  

temperature from the observation and the CMIP5 multi-model mean from 17 models (see 754	  

Figure 21 caption). Model and observation data are re-gridded to a common resolution 755	  

2.5° × 2.5° using area averaging. Trends are calculated for the 1930-2004 period using 756	  

the Theil-Sen approach (Theil, 1950; Sen, 1968). The choice of 1930-2004 gives a 757	  
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prominent WH signal in the observations starting from the warmest decade following the 758	  

Dust Bowl drought. Only one ensemble member from each model is included in the 759	  

analysis as ensemble members from the same model show similar spatial patterns of 760	  

long-term trends (Kumar et al., 2013). The MME mean neither shows a cooling trend in 761	  

the eastern US, nor lesser warming relative to the western US. This indicates that, similar 762	  

to CMIP3 (Kunkel et al. 2006) simulations, the CMIP5 simulations do not show the WH 763	  

as a forced response signal. 764	  

Figure 22 shows the temporal evolution of 30-year moving window annual 765	  

temperature trends over the eastern US in the observational data and CMIP5 simulations, 766	  

and relative to the western US. The multi-decadal persistence of the WH is clearly visible 767	  

in the observational data i.e. most negative temperature trends are clustered between 1925 768	  

and 1955. The 95% model spread range brackets the observed multi-decadal variability in 769	  

the eastern US temperature trends and approximately 40% of the 95% model spread 770	  

range is negative. The multi-model median captures the overall tendency of positive and 771	  

negative trend evolution (r2 = 0.58). Pan et al. (2013) found that 19 out of 100 CMIP5 772	  

historical ‘all forcings’ simulations showed negative temperature trends in the southeast 773	  

USA; whereas simulations based on greenhouse gas emissions forcing only showed a 774	  

strong warming in the central US. These results suggest that there is some fidelity with 775	  

observations via external forcings, but natural climate variability plays a major role. 776	  

Kumar et al. (2012) found that the 30 year running temperature trend variability in the 777	  

eastern US is significantly correlated (r2 = 0.76) with the AMO and models that have 778	  

relatively higher skill in AMO simulations also have a higher chance of reproducing the 779	  

WH in the eastern United States. There is essentially no skill in the model’s 780	  
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representation of the difference in trends between the eastern and western US running 781	  

trends (Fig. 22b). 782	  

 783	  

7.2. Trends in Diurnal Temperature Range (DTR)  784	  

Observed warming during the day and night has been asymmetric, with nocturnal 785	  

minimum surface air temperature (Tmin) rising about twice as fast than daytime 786	  

maximum temperature (Tmax) during the second half of 20th century, mostly during 787	  

1950-1980 (Vose et al., 2005). Changes in cloud cover, atmospheric water vapor, soil 788	  

moisture and other factors, account for 25-50% of the DTR reduction (Dai et al., 1999). 789	  

Cloud cover, soil moisture, precipitation, and atmospheric/oceanic teleconnections 790	  

account for up to 80% of regional variance over 1901-2002. Over the U.S., cloud cover 791	  

alone accounts for up to 63% of regional annual DTR variability (Lauritsen and Rogers, 792	  

2012). During 1950-2004, summer Tmax and Tmin over North America increased 0.07 793	  

and 0.12 °C, respectively, resulting in a -0.05 °C decrease in DTR (Voss et al., 2005). A 794	  

similar decrease (-0.06 °C) occurred in winter.  Over the WH region, summer Tmax 795	  

decreased sharply (-0.13 oC) while Tmin increased slightly (0.05 °C), yielding a DTR 796	  

decrease of 0.18 °C. Winter DTR also decreased by 0.13 °C. 797	  

Figure 23 shows a comparison of DTR magnitude and the linear trend in DTR 798	  

from 17 models against the CRU TS3.1 observational dataset. The observed mean DTR 799	  

(Tmax-Tmin) is characterized by high values over the western high mountainous regions 800	  

in summer and low values in high latitudes (Fig. 23a). The MME mean simulates this 801	  

general pattern with under-estimation in the mountains. The observed DTR trend is 802	  

predominantly negative in the U.S and Mexico and largely positive in Canada in both 803	  
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seasons (Fig. 23b). The largest decreasing DTR trend up to 0.2oC per decade is over the 804	  

southeastern U.S. warming hole region in summer. The model DTR trend is poorly 805	  

reproduced, missing the extensive negative trend over the southeastern region where 806	  

models simulated increasing DTR trend (Fig. 23b, right panels). The pattern correlation 807	  

between the observed and simulated DTR is from 0.40 to 0.82, with a mean of 0.67 for 808	  

the 17 models, but the correlation of DTR trend is much lower, ranging from 0.19 to -809	  

0.26 (mean = 0.03). The model skill in simulating DTR trends does not appear to have 810	  

improved from CMIP3 (Zhou et al., 2009) and earlier model comparisons (e.g. 811	  

Branagnza et al., 2004), however, the role of anthropogenic forcings appears to be 812	  

essential in producing a decline in DTR (Zhou et al., 2009), even if it is underestimated. 813	  

 814	  

7.3. Trends in Precipitation 815	  

Precipitation has generally increased over North America in the last half of the 816	  

20th century (Karl and Knight, 1998; Zhang et al., 2000). Trends in precipitation are 817	  

positively correlated with streamflow trends, thereby affecting water resource availability 818	  

and flood potential (Lettenmaier et al. 1994; McCabe and Wolock 2002, Kumar et al. 819	  

2009). Figure 24 shows the multi-model ensemble average precipitation trend for 1930-820	  

2004 from 17 models against the CRU observations. The multi-model average weakly 821	  

captures the wetting trend in North America, particularly at higher latitudes. Note that the 822	  

precipitation gauge density before the 1950s was very low, especially in high latitudes, 823	  

and the observational trends are very uncertain, especially in high-latitudes, at least for 824	  

the first part of the time period. However, the MME mean fails to capture the trend 825	  

magnitude, for example, the higher wetting trend (>20 mm/decade) in the eastern US. 826	  
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Figure 25 (a) and (b) show the 30 year running trend during the 20th century in the 827	  

eastern and western US, respectively. The 95% model spread brackets the observed 828	  

precipitation trend magnitude in both regions. The higher wetting trend in the 829	  

observations has slowed down in the last decade in the eastern US. The muted magnitude 830	  

of the trend in Figure 24 seems to be a result of low signal to noise ratio (the multi-model 831	  

median line hovers around the zero line in Figure 25), rather than a robust feature of 832	  

CMIP5 climate models. Some individual models capture very well the observed trend 833	  

magnitude. Drying in Mexico is a dominant but incorrect feature in the CMIP5 834	  

simulations, which is symptomatic of CMIP3 models also (IPCC, 2007) and is likely 835	  

driven by the inadequate connection between increasing precipitation and global SST 836	  

warming, at least for summer, in the majority of models as shown by Fu et al. (2012) for 837	  

the southern US. 838	  

 839	  

8. Discussion and Conclusions 840	  

This study has evaluated the simulated variability from the CMIP5 multi-model 841	  

ensemble at intra-seasonal to multi-decadal time scales for North America and adjoining 842	  

seas. The results show a mixture of performance, with some aspects of climate variability 843	  

well reproduced (e.g. the spatial footprint of the PDO and its teleconnections), others 844	  

reproduced well by some models but not others (e.g. ISV in the tropical Pacific; ENSO 845	  

teleconnections and types) and others poorly by most models (e.g. tropical cyclone 846	  

frequency; ENSO asymmetry; teleconnections with the AMO; long-term trends in DTR 847	  

and precipitation). No one model stands out as better than the others, but certain models 848	  

do perform much better for certain features. For example, the Hadley Center models do 849	  
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well for the Central America mid-summer drought and the SST footprint of the AMO; the 850	  

MRI-CGCM3 model does relatively well for intra-seasonal and inter-annual variability in 851	  

the tropical Pacific and for tropical cyclone counts. In general, higher-resolution models 852	  

do better for features such as tropical cyclones, but this does not appear to be a dominant 853	  

factor for other aspects of climate variability. Furthermore, no model stands out as being 854	  

particularly unskillful, bolstering the argument to consider all models irrespective of 855	  

performance to encompass the uncertainties (Knutti, 2010). In fact, the range of processes 856	  

and metrics analyzed is a key advantage of this study, because skill in one aspect does not 857	  

necessarily mean good performance in another. For example, the NorESM1-1 model does 858	  

very well at representing the two types of ENSO and its teleconnections, but does poorly 859	  

at representing ENSO asymmetry. As a consequence, an overall ranking of models, albeit 860	  

seemingly attractive, is difficult given the challenges in quantitatively comparing 861	  

performance across different types of analysis, as well as the logistical challenges of 862	  

sampling the same set of models across all analyses.  863	  

For the climate features and models analyzed here, there does not appear to be a 864	  

great deal of improvement since CMIP3. For example, CMIP5 models still cannot 865	  

capture the seasonal timing of ENSO events, that tend to peak in the fall and winter, and 866	  

the spurious drying signal in the southern US and Mexico continues from CMIP3. 867	  

However, some features continue to be well simulated, such as the SST pattern of the 868	  

PDO, and features related to spatial resolution are likely to have improved, such as the 869	  

representation of TCs. Overall, the models are less able to capture observed variability 870	  

and long-term trends than they are the mean climate state as evaluated in the first part of 871	  

this paper (Sheffield et al., 2013), although this may be a result of model tuning to 872	  
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observations (Räisänen, 2007). This is understandable for decadal to multi-decadal 873	  

variability which is dependent on the models’ internal variability or the sensitivity to 874	  

external forcing, for which the observations can be very uncertain. Some of the biases in 875	  

variability, however, appear to be related to problems in simulating the mean state, and 876	  

there are encouraging signs that improvements in the models, or at least the 877	  

understanding of the sources of errors, can be made (e.g. biases in the depiction of the 878	  

mean state of tropical Pacific may be linked to biases in the ISV, the lack of asymmetry 879	  

in ENSO phases and to teleconnections with North American climate). 880	  

The results have implications for the interpretation and robustness of the model 881	  

projected future changes. The third part of this paper (Maloney et al., 2013) evaluates the 882	  

model projections for a subset of the features analyzed in the first part of this paper 883	  

(Sheffield et al., 2013) and this second part. As noted in the first part, the accurate 884	  

simulation of historic climate features is not sufficient for credible projections, although 885	  

the depiction of large-scale climate features is necessary. Several studies of future 886	  

projections show only small differences between models that do better at replicating 887	  

observations and those that do worse (e.g. Brekke et al., 2008; Knutti et al., 2010) whilst 888	  

others have found relationships between model performance and future projections that 889	  

can be related to physical processes (e.g. Hall and Qu, 2006; Boe et al, 2009). However, 890	  

these types of studies are generally specific to certain climate features that do not 891	  

necessarily provide confidence or pessimism in model skill in a broader sense.  892	  

The adequate depiction of the variability is nevertheless necessary because this is 893	  

generally associated with the more extreme aspects of climate that impose the largest 894	  

impacts. Furthermore, the depiction of the teleconnections associated with large-scale 895	  
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variability is especially important because the impacts of potential changes in the 896	  

variability of, say, ENSO (Van Oldenborgh et al., 2005; Muller and Roeckner, 2008) are 897	  

subject to uncertainties in the representation of teleconnections (Maloney et al., 2013). 898	  

Model variability can also have a large impact on future changes because the signal to 899	  

noise ratio can be highly dependent on the model’s natural variability resulting in 900	  

misleading assessments of future changes and uncertainties across models (Tebaldi et al., 901	  

2011). The ability of the models to reproduce the observed trends may be a better 902	  

indicator of model reliability than depiction of the mean climate or even its variability, 903	  

because this indicates the model’s sensitivity to an external forcing that may continue 904	  

into the future, such as greenhouse gas concentrations. The problem here is that the trend 905	  

analyzed is subject to uncertainties in the observations, the complications of natural 906	  

variability in the real world and models, and uncertainties in feedbacks and how they may 907	  

change in the future (Räisänen, 2007; Knutti, 2010). The generally poor ability of the 908	  

models to reproduce the trends in precipitation, DTR and some features of regional 909	  

temperature shown here are indicative of this. 910	  
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Figure Captions 1449	  

Figure 1. Taylor diagram for summer mean (May-September) rainfall over the eastern 1450	  
Pacific (150oW-80oW; 5oS-30oN) simulated in CMIP5 GCMs. The rainfall observations 1451	  
are based on TMPA data. 1452	  
 1453	  
Figure 2. Spatial distribution of amplitude (a) and phase (b) of the first leading complex 1454	  
EOF (CEOF1) mode based on 30-90-day band-pass filtered TRMM rainfall during boreal 1455	  
summer (June-September) over the eastern Pacific. To make the spatial phase patterns of 1456	  
the CEOF1 based on the observations and simulations comparable to each other, the 1457	  
spatial phase of CEOF1 for each dataset is adjusted by setting the domain averaged value 1458	  
to be zero over a small box region of 110oW-100oW, 10-15oN. Contours are only 1459	  
displayed where the local variance explained by CEOF1 exceeds 8%; (c): X-axis: Pattern 1460	  
correlation coefficients of the CEOF1 mode between TRMM observations and CMIP5 1461	  
GCM simulations. Y-axis: Relative amplitudes of CEOF1 in model simulations to their 1462	  
observed counterparts. Both pattern correlations and amplitudes are derived by averaging 1463	  
over the area of 5oN-25oN, 140oW-80oW where the active ISV is observed. The black 1464	  
“star” mark represents the TMPA observations. 1465	  
 1466	  
Figure 3. Summertime (June-September) MSD strength (mm/day) for three observational 1467	  
estimates (TRMM 3B43, UNAM and GPCP) and the CMIP5 MME mean for 23 models 1468	  
(see Table 3). Also shown (bottom row) are the MME standard deviation and histogram 1469	  
of the pattern correlations between individual models and the MME mean. All model 1470	  
output and observational data were regridded onto a common 0.5° grid. 1471	  
 1472	  
Figure 4. Storm track density (top) and mean strength (bottom) for ERA Interim and 1473	  
seven CMIP5 models (CanESM2, CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, 1474	  
MPI-ESM-L and MRI-CGCM3). Tracks are based on 6-hourly 850hPa relative vorticity 1475	  
smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity 1476	  
field. 1477	  

Figure 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the 1478	  
period 1950-2005 (GFDL-ESM2M (1 ensemble member), HadGEM2 (1), MPI-ESM-LR 1479	  
(3), MRI CGCM3 (5) and MIROC5 (1) models) and in observations for the same period. 1480	  
The number of storms in each case is given in the bottom right corner of each panel. One 1481	  
ensemble member is used for each model.  1482	  

Figure 6. Mean number of TCs per month in models (GFDL-ESM2M, HadGEM2-ES (in 1483	  
the figure HGEM2), MPI-ESM-LR, MRI-CGCM3, MIROC5) and observations in the 1484	  
North Atlantic (top left panel) and eastern North Pacific (top right panel), using only 1485	  
ensemble 1 for MRI-CGCM3. Number of TCs per year in the period 1950-2005 in 1486	  
models and observations for the North Atlantic (bottom left panel) and eastern North 1487	  
Pacific (bottom right panel). The blue box shows the 25-75 percentile range, with the 1488	  
median shown as a red line. The whiskers and red crosses show the data outside of 1489	  
middle quartiles. 1490	  

Figure 7. Upper panels: Comparison of observed and C180HIRAM (one realization) 1491	  
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simulated hurricane tracks for the N. Atlantic and E. Pacific for 1981-2008. Middle 1492	  
panel: Comparison of observed and C180HIRAM simulated annual hurricane count 1493	  
statistics. Blue boxes show the 25-75 percentile range, with the median shown as a red 1494	  
line and the mean shown as a red star. The whiskers show the maximum and minimum 1495	  
values. The annual statistics are computed based on a 3-member ensemble mean for 1496	  
1981-2008. Lower panels: Observed and model simulated seasonal cycle (number of 1497	  
hurricanes per month) for the N. Atlantic and E. Pacific from the 3-member ensemble 1498	  
mean (1=JAN, 12=DEC). 1499	  
 1500	  
Figure 8. Taylor diagrams for (a) El Niño and (b) La Niña composite 300 hPa 1501	  
geopotential patterns over the region from East Asia – North America. Higher 1502	  
performance (pattern correlation > 0.6, RMS difference < 13m in both (a) and (b)) 1503	  
models are indicated in red, whereas lower performance models are indicated in blue.  In 1504	  
(a) HadCM3, which falls outside of the plot, has a pattern correlation of -0.3 and RMS 1505	  
difference of 17.6 m. The points labeled “ens” in red, blue, and green represent the higher 1506	  
performance, lower performance, and total ensemble, respectively. The composites are 1507	  
normalized by the Niño 3.4 SST amplitude to focus on pattern differences independent of 1508	  
ENSO amplitude differences. The observational reference is based on the NCEP/NCAR 1509	  
reanalysis for 1950-2010, whereas the CMIP calculations are based on the full historical 1510	  
period (1850-2005) for one run of each model.	  1511	  

Figure 9. Composites of (a,b,c) 300 hPa height (z300, m), (d,e,f) near surface air 1512	  
temperature (SAT, ᵒC), (g,h,i) precipitation (Precip, mm/day), and (j,k,l) SST (ᵒC) 1513	  
anomalies during DJF El Niño episodes in observations (left column), and both high 1514	  
(middle column) and low performance CMIP5 ensembles (right column) described in 1515	  
Fig. 8. The observational SAT and precipitation composites are based on the CRU TS3.1 1516	  
land near-surface temperature and precipitation datasets for 1901-2009. The z300, SAT, 1517	  
and Precip composites are normalized by the Niño 3.4 SST anomaly. Stippling in the 1518	  
observed (a) z300, (d) SAT, and (g) precipitation composites indicates anomalies that are 1519	  
statistically significant at the 5% level. 1520	  

Figure 10. Composite DJF El Niño (a) precipitation (mm/day) and (b) SST (ᵒC) 1521	  
difference between the high and low performance CMIP5 ensemble described in Fig. 8.  1522	  
Stippling indicates differences that are statistically significant at the 5% level. (c) DJF 1523	  
SST climatology difference (ᵒC) between the high and low performance ensemble, and 1524	  
(d) high and (e) low performance SST climatology bias (ᵒC) for the 1951-2000 period.	  1525	  

Figure 11. US winter surface air temperature regressed on the EP (top six rows) and CP 1526	  
(bottom six rows) ENSO indices from observations and the CMIP5 models. 1527	  
Observational air temperature data are from the NCEP-NCAR reanalysis and SSTs are 1528	  
from the ERSST dataset for 1950-2010. 1529	  

Figure 12. (a) Scatter plot of pattern correlations between the regression patterns from 1530	  
the CMIP5 models and those from the observations (NCEP-NCAR reanalysis and 1531	  
HadISST dataset) for EP versus CP ENSO; (b) Scatter plot of the intensities of the EP/CP 1532	  
ENSO from the CMIP5 models and the observation (ERSST). The values shown are the 1533	  
maximum standard deviations of the EOF patterns of the two types of the ENSO 1534	  
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calculated using a regression-EOF method. The blue dashed lines indicate the lower limit 1535	  
of the 95% significance interval of the observed ENSO intensities based on an F-test. 1536	  
 1537	  
Figure 13. The sum of the composite SST anomalies between the two phases of ENSO 1538	  
from the HadISST observations and CMIP5 coupled models. The definition of the warm 1539	  
phase and cold phase of ENSO follows that of Zhang et al. (2009). The length of data 1540	  
used in the calculation is 50 years for all the models and observations (1950-99). 1541	  

Figure 14. The standard deviation (upper panel) and skewness (lower panel) of monthly 1542	  
Niño-3 SST anomalies from observations and CMIP5 model simulations. The length of 1543	  
data for computing the standard deviation and skewness is 50 years for the observations 1544	  
(1950–99). For the model, the standard deviation and skewness were calculated for a 50-1545	  
year moving window over 100 years of the model run for a total of 601 samples. The 1546	  
figure shows the mean of the samples and +- the standard deviation across the samples. 1547	  
Data used are the same as for Figure 13. 1548	  

Figure 15. Summertime wet and dry circulation patterns for the central US from the 1549	  
NCEP/NCAR reanalysis. a) and b) show, respectively, summertime precipitation 1550	  
anomalies (contours) in wet and dry years, in reference to the Great Plains precipitation, 1551	  
and the vertically integrated moisture fluxes from the surface to the top of the troposphere 1552	  
(arrows).  c) The differences between a) and b). d) and e) show the corresponding 850hPa 1553	  
geopotential height (countour) and 925hPa wind anomalies (arrows) for the wet and dry 1554	  
summer, respectively. Their differences are summerized in f).  1555	  

Figure 16. Same as Fig. 15 but for CCSM4 simulation results. 1556	  

Figure 17. PDO SST patterns in observations and CMIP5 models. Linear regression of 1557	  
SST on the PDO index in (a) observations and (b) the CMIP5 ensemble, and (c) the 1558	  
CMIP5 minus observed PDO regression. Observations are from the HadISST dataset for 1559	  
the period between 1870 and 2009. For the CMIP5 models, the analysis period begins as 1560	  
early as 1850 and extends to 2005, and a single realization is used for each model. The 1561	  
contour interval is 0.2ᵒC in (a) and (b) and 0.1ᵒC in (c), with the zero contour omitted.  1562	  
Stippling in (c) indicates where the differences are statistically significant at the 95% 1563	  
significance level based on a two-sided t-test. (d) Standard deviation of the PDO SST 1564	  
regressions within the ensemble.  Contour interval is 0.05ᵒC. 1565	  

Figure 18. December-February PDO SAT and precipitation regression patterns over 1566	  
North America. Regressions of DJF SAT (a,c) and precipitation (b,d) on the PDO index 1567	  
in (a,b) observations and (c,d) the CMIP5 ensemble. The differences between the 1568	  
regression patterns (CMIP5 minus observations) are shown in (e) and (f). The contour 1569	  
interval is 0.1ᵒC for the SAT regressions (a, c, e) and 0.05 mm/day for the precipitation 1570	  
regressions (b,d,f). Stippling in (e) and (f) correspond to differences that are significantly 1571	  
different at the 95% confidence level based on a two-sided t-test. To focus on 1572	  
multidecadal variability a Butterworth 10-year low-pass filter is applied to each PDO 1573	  
index time series, which is then re-standardized and detrended. The SAT and 1574	  
precipitation anomalies are then regressed on the filtered index for each season. The 1575	  
observations are the CRU TS3.1 temperature and precipitation datasets.  1576	  
 1577	  



	   70 

Figure 19. The JJASON AMO index in CMIP5 models compared to observations for (a) 1578	  
the time series and (b) autocorrelations. The AMO index is defined as the the 11-year 1579	  
running mean of the detrended North Atlantic SST during the Atlantic hurricane season 1580	  
of June to November (JJASON) from the equator to 60°N, 75°W-5°W. SST observations 1581	  
are from the ERSST dataset.  1582	  
 1583	  
Figure 20. Autumn (SON) regressions of the AMO index on SST and precipitation from 1584	  
observations (HadISSTv1.1 and CRU TS3.1), and 17 CMIP5 models for 1901-1999. The 1585	  
AMO index is the area-averaged SST anomalies over the domain (75°-5°W, 0°-60°N), 1586	  
which are detrended and then smoothed via a 11-year running mean. Regressions are 1587	  
calculated for the first ensemble member for each model; observed and simulated 1588	  
anomalies have been regridded to a 1.5°×1.5° grid for precipitation, and a 5°×2.5° grid 1589	  
for SST. Blue/red shading denotes negative/positive SST anomalies, while brown/green 1590	  
shading denotes negative/positive precipitation anomalies. Contour interval is 0.1K and 1591	  
0.02 mm day-1, respectively. 1592	  

Figure 21. Observed and MME mean temperature trends (°C/decade) for North America 1593	  
(1930-2004) for (a) annual, (b) summer, and (c) winter. Observations are from the CRU 1594	  
TS3.1 dataset. The MME mean is calculated from the first ensemble member of 17 1595	  
models (BCC-CSM1.1, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-1596	  
CM3, GFDL-ESM2M, GISS-E2-R, HadCM3, HadGEM2-ES, INMCM4, IPSL-CM5A-1597	  
LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M). Eastern and 1598	  
western US regions are shown by the boxes. 1599	  
 1600	  
Figure 22: 30-year running annual temperature trend for (a) the Eastern US, (b) 1601	  
difference in trend between the Eastern and Western US. Regions are defined in Fig. 21. 1602	  
Shading represents the 95% uncertainty range calculated from 17 models (see Fig. 21), 1603	  
one ensemble member from each model. Black solid line is the observation (CRU TS3.1) 1604	  
and blue solid line is the MME median. X-axis represents the start of the 30-year running 1605	  
period. For example, the trend value at 1930 represents the trend from 1930 to 1959.  1606	  

Figure 23. Comparison of (a) mean DTR and (b) DTR trend for the obsevrations (CRU 1607	  
TS3.1) and MME mean of the 17 models (right; see Fig. 21) for 1951-2000. The contour 1608	  
lines are the inter-model standard deviation.  1609	  
 1610	  
Figure 24. Observed and MME mean annual precipitation trends (mm/decade) for North 1611	  
America (1930-2004). Observations are from the CRU TS3.1 dataset. The MME mean is 1612	  
from 17 models (see Fig. 21), 1 ensemble member from each model. Eastern and western 1613	  
US regions are shown by the boxes. 1614	  

Figure 25. 30-year running annual precipitation trend (mm/decade) for (a) the Eastern 1615	  
US, and (b) the Western US. Regions are shown in Fig. 23. The shaded region is the 95% 1616	  
uncertainty range calculated from 17 models (see Fig. 21), one ensemble member from 1617	  
each model. Black solid line is the observation (CRU TS3.1) and blue solid line is the 1618	  
MME median. X-axis represents the start of the 30-year running period. For example, the 1619	  
trend value at 1930 represents the trend from 1930 to 1959. 1620	  

 1621	  
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1622	  



	   72 

Tables 1622	  

Table 1. CMIP5 models evaluated and their attributes. 1623	  

Model	   Center	   Atmospheric 
Horizontal 
Resolution 
(lon.  x lat.)	  

Number 
of model 

levels	  

Reference	  

ACCESS1-0	   Commonwealth Scientific and 
Industrial Research 
Organization/Bureau of 
Meteorology, Australia	  

1.875 x 1.25	   38	   Bi et al. 
(2012)	  

BCC-CSM1.1	   Beijing Climate Center, China 
Meteorological Administration, 
China	  

2.8 x 2.8   	   26	   Xin et al. 
(2012)	  

CanCM4	   Canadian Centre for Climate 
Modelling and Analysis, Canada	  

2.8 x 2.8	   35	   Merryfield 
et al. 
(2012)	  

CanESM2	   Canadian Center for Climate 
Modeling and Analysis, Canada	  

2.8 x 2.8   	   35	   Arora et al. 
(2011)	  

CCSM4	   National Center for Atmospheric 
Research, USA	  

1.25 x 0.94	   26	   Gent et al. 
(2011)	  

CESM1-
CAM5-1-FV2 

Community Earth System 
Model Contributors (NSF-DOE-	  
NCAR) 

1.4 x 1.4	   26	   Gent et al. 
(2011)	  

CNRM-
CM5.1	  

National Centre for 
Meteorological Research, France	  

1.4 x 1.4	   31	   Voldoire et 
al. (2011)	  

CSIRO-
MK3.6	  

Commonwealth Scientific and 
Industrial Research 
Organization/Queensland 
Climate Change Centre of 
Excellence, AUS	  

1.8 x 1.8	   18	   Rotstayn et 
al. (2010)	  

EC-EARTH	   EC-EARTH consortium	   1.125 x 1.12	   62	   Hazeleger 
et al. 
(2010)	  

FGOALS-
S2.0	  

LASG, Institute of Atmospheric 
Physics, Chinese Academy of 
Sciences	  

2.8 x 1.6	   26	   Bao et al. 
(2012)	  
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GFDL-CM3	   NOAA Geophysical Fluid 
Dynamics Laboratory, USA	  

2.5 x 2.0	   48	   Donner et 
al. (2011)	  

GFDL-
ESM2G/M	  

NOAA Geophysical Fluid 
Dynamics Laboratory, USA	  

2.5 x 2.0	   48	   Donner et 
al. (2011)	  

GISS-E2-H/R	   NASA Goddard Institute for 
Space Studies, USA	  

2.5 x 2.0	   40	   Kim et al. 
(2012)	  

HadCM3	   Met Office Hadley Centre, UK	   3.75 x 2.5	   19	   Collins et 
al. (2001)	  

HADGEM2-
CC 
(Chemistry 
coupled)	  

Met Office Hadley Centre, UK	   1.875 x 1.25	   60	   Jones et al. 
(2011)	  

HadGEM2-
ES	  

Met Office Hadley Centre, UK	   1.875 x 1.25	   60	   Jones et al. 
(2011)	  

INMCM4	   Institute for Numerical 
Mathematics, Russia	  

2 x 1.5	   21	   Volodin et 
al. (2010)	  

IPSL-CM5A-
LR	  

Institut Pierre Simon Laplace, 
France	  

3.75 x 1.8	   39	   Dufresne et 
al. (2012)	  

IPSL-CM5A-
MR	  

Institut Pierre Simon Laplace, 
France	  

2.5 x 1.25	   39	   Dufresne 
et al. 
(2012)	  

MIROC4h	   Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), National 
Institute for Environmental 
Studies, and Japan Agency for 
Marine-Earth Science and 
Technology, Japan	  

0.56 x 0.56	   56	   Sakamoto 
et al. 
(2012)	  

MIROC5	   Atmosphere and Ocean Research 
Institute (The University of 
Tokyo), National Institute for 
Environmental Studies, and 
Japan Agency for Marine-Earth 
Science and Technology, Japan	  

1.4 x 1.4	   40	   Watanabe 
et al. 
(2010)	  

MIROC-
ESM	  

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean 
Research Institute (The 

2.8 x 2.8	   80	   Watanabe 
et al. 
(2010)	  
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University of Tokyo), and 
National Institute for 
Environmental Studies	  

MIROC-
ESM-CHEM	  

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), and 
National Institute for 
Environmental Studies	  

2.8 x 2.8	   80	   Watanabe 
et al. 
(2010)	  

MPI-ESM-
LR	  

Max Planch Institute for 
Meteorology, Germany	  

1.9 x 1.9	   47	   Zanchettin 
et al. (2012)	  

MRI-CGCM3	   Meteorological Research 
Institute, Japan	  

1.1 x 1.1	   48	   Yukimoto 
et al. 
(2011)	  

NorESM1-M	   Norwegian Climate Center, 
Norway	  

2.5 x 1.9	   26	   Zhang et al. 
(2012)	  

	  1624	  

1625	  
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Table 2. Observational and reanalysis datasets used in the evaluations.  1625	  

Dataset	   Type	   Spatial Domain	   Temporal Domain	   Reference	  
Precipitation	  

TMPA 3B42 V6	   Satellite	   0.25 deg, 50S-
50N	  

3-hourly/monthly, 
1998-2010	  

Huffman et 
al. (2007)	  

CRU TS3.1	   Gauge	   0.5 deg, global 
land	  

Monthly, 1901-2008	   Mitchell et 
al. (2005)	  

CPC unified	   Gauge	   0.5 deg, US	   Daily, 1948-2010	   Xie et al. 
(2010)	  

GPCP v2.1 Gauge/satellite 1.0 deg, global 1979-2009 Adler et al. 
(2003) 

UNAM v0705 Gauge 0.5 deg, Mexico 
and surroundings 

1901-2002 UNAM 
(2007) 

Temperature	  
CRU TS3.1	   Gauge	   0.5 deg, global 

land	  
Monthly, 1901-2008	   Mitchell et 

al. (2005)	  
Sea Surface Temperature	  

HadISST	   In situ/satellie	   Global Oceans, 
1.0 deg	  

Monthly, 1870-present	   Rayner et al. 
(2003)	  

ERSSTv3b	   In situ	   Global Oceans, 
2.0 deg	  

Monthly, 1854-present	   Smith et al. 
(2008)	  

Reanalyses	  
NCEP-NCAR	   Model reanalysis	   ~1.9 deg, global	   6-hourly, 1948-present	   Kalnay et al. 

(1996)	  
NCEP-DOE	   Model reanalysis	   ~1.9 deg, global	   6-hourly, 1979-present	   Kanamitsu 

et al. (2002)	  
20CR	   Model reanalysis	   ~0.3 deg, global	   6-hourly, 1871-present	   Compo et 

al. (2011)	  
ERA-interim	   Model reanalysis	   1.5 deg, global	   6-hourly, 1979-present	   Dee et al. 

(2011) 
Storm Tracks	  

National 
Hurricane Center 
best track tropical 
cyclone data	  

In-situ/satellite	   Storm tracks, 
Eastern N. Pacific 
and N. Atlantic	  

6-hourly, 1851-present 
(Atlantic), 1949-
present (eastern N. 
Pacific)	  

Jarvinen et 
al. (1984)	  

IBTrACS	   Best track 
datasets from 
various agencies	  

Storm tracks, 
global oceans	  

6-hourly, 1842-2010	   Knapp et 
al. (2010)	  

	  1626	  

1627	  
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Table 3. Spatial correlation of the MSD between the CMIP5 models and the MME mean, 1627	  
calculated for 1850-2005 . 1628	  

Model R 
BCC-CSM1-1 0.45 
CanCM4 0.37 
CanESM2 0.42 
CCSM4 0.17 
CNRM-CM5 0.49 
CSIRO-Mk3-6-0 0.51 
GFDL-CM3 0.29 
GFDL-ESM2G 0.48 
GFDL-ESM2M 0.27 
GISS-E2-H 0.35 
GISS-E2-R 0.34 
HadCM3 0.75 
HadGEM2-CC 0.79 
HadGEM2-ES 0.81 
INMCM4 0.14 
IPSL-CM5A-LR 0.40 
IPSL-CM5A-MR 0.34 
MIROC5 0.71 
MIROC-ESM -0.04 
MIROC-ESM-CHEM -0.04 
MPI-ESM-LR 0.61 
MRI-CGCM3 0.33 
NorESM1-M 0.14 
 1629	  

1630	  
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Table 4. Spatial correlations of model fields with ERA-Interim for the months indicated 1630	  
and for 1979-2005. Correlations of the 850 hPa wind components and geopotential height 1631	  
have been combined into one index R_ZUV850, while 850 hPa track density and strength 1632	  
correlations have been combined into a second index R_TRK850 to simplify the 1633	  
comparisons. Values in bold are the upper 25th percentile of the nine models shown. 1634	  

 1635	  

 

 

May-Oct 

R_ZUV850 

May-Nov 

R_TRK850 

BCC-CSM1.1 0.76 0.69  

CanESM2 0.83 0.63  

CCSM4 0.77 0.57  

CNRM-CM5 0.90 0.84 

GFDL-ESM2M 0.75 0.77  

HadGEM2-ES 0.85 0.90  

MIROC5 0.82 0.86  

MPI-ESM-LR 0.82 0.85  

MRI-CGCM3 0.79 0.86  

75th Percentile 0.83 0.86 

	  1636	  

 1637	  
1638	  
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Table 5. Error statistics for the CMIP5 PDO regressions on North American seasonal 1638	  
SAT and temperature. Pattern correlations lie above the RMS difference (ºC for SAT, 1639	  
mm/day for precipitation). Regression differences at each grid point are evaluated with a 1640	  
two-sided t-test, for which the effective degrees of freedom are adjusted for the lag-1 1641	  
autocorrelation in the residuals, as in Santer et al. (2000). Bold indicates regression 1642	  
pattern differences that are statistically significant at the 5% level based on a false 1643	  
discovery rate field significance test (Wilks, 2006).  1644	  

Model DJF 
SAT 

DJF 
Precip. 

MAM 
SAT 

MAM 
Precip. 

JJA 
SAT 

JJA 
Precip. 

SON 
SAT 

SON 
Precip. 

BCC-CSM1.1 0.90 
0.18 

0.33 
0.07 

0.67 
0.12 

0.20 
0.05 

0.48 
0.08 

0.07 
0.10 

0.05 
0.16 

0.06 
0.07 

CanESM2 0.63 
0.19 

0.31 
0.06 

0.76 
0.10 

0.24 
0.05 

0.45 
0.07 

0.04 
0.06 

-0.11 
0.12 

-0.07 
0.07 

CCSM4 0.85 
0.16 

0.44 
0.06 

0.69 
0.20 

0.23 
0.06 

0.29 
0.09 

-0.15 
0.08 

0.10 
0.29 

0.11 
0.10 

CNRM-CM5 0.54 
0.22 

0.30 
0.07 

0.64 
0.18 

0.20 
0.06 

0.31 
0.11 

-0.04 
0.07 

0.44 
0.09 

-0.02 
0.08 

CSIRO-Mk3.6.0 0.70 
0.19 

0.11 
0.07 

0.51 
0.20 

-0.05 
0.11 

0.31 

0.14 
-0.01 
0.19 

0.30 
0.18 

0.16 
0.12 

FGOALS-s2 0.72 
0.16 

0.02 
0.08 

0.41 
0.15 

0.09 
0.06 

0.26 
0.10 

0.00 
0.06 

0.34 
0.14 

-0.08 
0.07 

GFDL-CM3 0.53 
0.20 

0.24 
0.07 

0.19 

0.18 
-0.11 
0.06 

0.22 
0.10 

0.01 
0.06 

0.19 
0.14 

0.10 
0.06 

GFDL-ESM-2G 0.82 
0.25 

0.06 
0.07 

0.53 
0.23 

-0.01 
0.07 

0.28 
0.12 

-0.06 
0.09 

0.28 
0.18 

0.14 
0.09 

GFDL-ESM-2M 0.52 

0.30 
0.26 
0.08 

0.22 
0.22 

-0.17 
0.08 

0.35 
0.11 

0.03 
0.11 

0.01 
0.14 

0.07 
0.09 

GISS-E2-R 0.70 
0.17 

0.41 
0.06 

0.57 
0.16 

0.18 
0.06 

0.04 

0.12 
-0.04 
0.10 

0.11 
0.11 

-0.04 
0.08 

HadGEM2-CC 0.76 
0.16 

0.52 
0.06 

0.55 
0.20 

0.26 
0.06 

0.37 
0.11 

-0.03 
0.08 

0.42 
0.09 

0.19 
0.06 

HadGEM2-ES 0.39 
0.22 

0.20 
0.08 

0.62 
0.19 

0.10 
0.07 

0.26 
0.09 

-0.09 
0.11 

0.07 
0.12 

0.08 
0.09 

HadCM3 0.73 
0.20 

0.30 
0.07 

0.75 
0.13 

0.28 
0.05 

0.21 
0.11 

0.04 
0.08 

0.27 
0.14 

0.20 
0.08 

INM-CM4 0.15 
0.25 

0.13 
0.07 

0.14 
0.19 

-0.14 
0.07 

0.05 
0.10 

-0.02 
0.07 

0.20 
0.09 

0.05 
0.06 

IPSL-CM5A-LR 0.87 
0.15 

0.21 
0.09 

0.40 
0.23 

-0.13 
0.08 

0.14 
0.10 

-0.14 
0.07 

0.19 
0.13 

0.09 
0.07 

IPSL-CM5A-MR 0.74 
0.17 

0.18 
0.09 

0.42 
0.17 

-0.09 
0.07 

0.11 
0.10 

-0.10 
0.07 

0.42 
0.11 

-0.06 
0.07 

MIROC5 0.65 
0.19 

0.23 
0.11 

0.69 
0.14 

0.26 
0.06 

0.29 
0.10 

0.00 
0.08 

0.05 
0.15 

-0.02 
0.09 

MIROC-ESM 0.48 
0.21 

-0.07 
0.07 

0.13 
0.17 

-0.22 
0.06 

0.33 
0.07 

-0.11 
0.06 

0.31 
0.09 

0.05 
0.06 

MPI-ESM-LR 0.77 
0.18 

0.20 
0.07 

0.34 
0.18 

-0.03 
0.07 

0.00 
0.13 

0.00 
0.08 

0.20 
0.14 

0.10 
0.08 

MRI-CGCM3 -0.47 
0.34 

0.11 
0.08 

0.09 
0.24 

0.10 
0.08 

0.14 
0.08 

-0.04 
0.08 

-0.64 
0.21 

-0.04 
0.08 

NorESM1-M 0.76 
0.24 

0.14 
0.08 

0.52 
0.17 

-0.01 
0.06 

0.39 
0.09 

-0.07 
0.07 

-0.05 
0.16 

-0.09 
0.07 

MME mean 0.91 
0.11 

0.47 
0.06 

0.63 
0.13 

0.10 
0.05 

0.37 
0.07 

-0.06 
0.06 

0.22 
0.10 

0.14 
0.06 

1645	  
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Table 6.  The RMSE and standard deviations of the AMO indices in CMIP5 models. 1645	  
Observations are from the ERSST dataset. 1646	  

 1647	  
Model Name RMSE (oC) Standard Deviation (oC) 

ACCESS1-0 0.1846 0.1870 
BCC-CSM1-1 0.1052 0.1528 
CanESM2 0.1532 0.1442 
CCSM4 0.1438 0.1198 
CNRM-CM5 0.1529 0.1031 
CSIRO-Mk3-6-0 0.1609 0.1550 
EC-EARTH 0.1501 0.0914 
FGOALS-g2 0.1835 0.1083 
GFDL-CM3 0.1638 0.1598 
GFDL-ESM2G 0.2110 0.1699 
GFDL-ESM2M 0.1493 0.1273 
GISS-E2-H 0.1376 0.0958 
GISS-E2-R 0.1453 0.1054 
HadCM3 0.1662 0.1421 
HadGEM2-CC 0.1926 0.1895 
HadGEM2-ES 0.1455 0.1517 
INMCM4 0.1485 0.0917 
IPSL-CM5A-LR 0.1800 0.1760 
IPSL-CM5A-MR 0.1374 0.1320 
IPSL-CM5B-LR 0.2240 0.1879 
MIROC5 0.1347 0.1335 
MIROC-ESM 0.1375 0.1467 
MIROC-ESM-CHEM 0.1544 0.1364 
MPI-ESM-LR 0.2123 0.1794 
MPI-ESM-P 0.1526 0.0993 
MRI-CGCM3 0.1515 0.1234 
NorESM1-M 0.1366 0.1118 
MME mean 0.1598 0.1378 
Observations 0 0.1761 
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Table 7. Spatial correlation between observed and CMIP5 regressed anomalies of the 
AMO on SST and precipitation in summer and fall for 1901-1999. The spatial domain for 
SST correlations is over the Atlantic Ocean north of the equator (130°W-10°E, 0°-75°N), 
while the domain for precipitation is the American continent north of the equator 
(130°W-60°W, 0°-60°N). The observed data sets are the HadISSTv1.1 and CRUTS3.1 
data sets for SST and precipitation, respectively. 

Model Summer 
SST 

Fall 
SST 

Summer 
Precipitation 

Fall 
Precipitation 

BCC-CSM1.1            -0.132 -0.205 0.131 0.293 
CanESM2  0.459 0.597 0.080 -0.172 
CCSM4  0.224 0.332 -0.092 -0.172 
CNRM-CM5.1  0.527 0.037 -0.029 -0.357 
CSIRO-MK3.6          0.037 0.308 -0.034 0.211 
GFDL-CM3             -0.213 0.176 0.143 0.145 
GFDL-ESM2M  0.325 0.461 0.129 0.014 
GISS-E2-R  0.586 0.675 -0.070 -0.014 
HadCM3  0.531 0.578 0.008 -0.116 
HadGEM2-ES  0.700 0.485 0.172 -0.309 
INM-CM4  -0.337 -0.126 -0.183 0.025 
IPSL-CM5A-LR  0.180 0.327 -0.072 0.060 
MIROC5  0.433 0.588 -0.196 -0.002 
MIROC-ESM  0.430 0.384 -0.168 -0.033 
MPI-ESM-LR  -0.135 0.230 -0.149 -0.129 
MRI-CGCM3 0.412 0.215 0.335 0.140 
NorESM1-M  0.098 -0.298 -0.127 -0.081 
MME mean 0.577 0.651 -0.012 -0.033 
 1648	  

 1649	  

 1650	  

1651	  
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 1651	  

 1652	  
Figure 1. Taylor diagram for summer mean (May-September) rainfall over the eastern 1653	  
Pacific (150oW-80oW; 5oS-30oN) simulated in CMIP5 GCMs. The rainfall observations 1654	  
are based on TMPA data.  1655	  
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1656	  
Figure 2. Spatial distribution of amplitude (a) and phase (b) of the first leading complex 1657	  
EOF (CEOF1) mode based on 30-90-day band-pass filtered TRMM rainfall during boreal 1658	  
summer (June-September) over the eastern Pacific. To make the spatial phase patterns of 1659	  
the CEOF1 based on the observations and simulations comparable to each other, the 1660	  
spatial phase of CEOF1 for each dataset is adjusted by setting the domain averaged value 1661	  
to be zero over a small box region of 110oW-100oW, 10-15oN. Contours are only 1662	  
displayed where the local variance explained by CEOF1 exceeds 8%; (c): X-axis: Pattern 1663	  
correlation coefficients of the CEOF1 mode between TRMM observations and CMIP5 1664	  
GCM simulations. Y-axis: Relative amplitudes of CEOF1 in model simulations to their 1665	  
observed counterparts. Both pattern correlations and amplitudes are derived by averaging 1666	  
over the area of 5oN-25oN, 140oW-80oW where the active ISV is observed. The black 1667	  
“star” mark represents the TMPA observations.	  1668	  

 1669	  
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 1670	  

Figure 3. Summertime (June-September) MSD strength (mm/day) for three observational 1671	  
estimates (TRMM 3B43, UNAM and GPCP) and the CMIP5 MME mean for 23 models 1672	  
(see Table 3). Also shown (bottom row) are the MME standard deviation and histogram 1673	  
of the pattern correlations between individual models and the MME mean. All model 1674	  
output and observational data were regridded onto a common 0.5° grid. 1675	  
 1676	  

 1677	  



	   84 

 1678	  

Figure 4. Storm track density (top) and mean strength (bottom) for ERA Interim and 1679	  
seven CMIP5 models (CanESM2, CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, 1680	  
MPI-ESM-L and MRI-CGCM3). Tracks are based on 6-hourly 850hPa relative vorticity 1681	  
smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity 1682	  
field. 1683	  



	   85 

 1684	  

Figure 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the 1685	  
period 1950-2005 (GFDL-ESM2M (1 ensemble member), HadGEM2 (1), MPI-ESM-LR 1686	  
(3), MRI CGCM3 (5) and MIROC5 (1) models) and in observations for the same period. 1687	  
The number of storms in each case is given in the bottom right corner of each panel. One 1688	  
ensemble member is used for each model.  1689	  
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 1690	  

Figure 6. Mean number of TCs per month in models (GFDL-ESM2M, HadGEM2-ES (in 1691	  
the figure HGEM2), MPI-ESM-LR, MRI-CGCM3, MIROC5) and observations in the 1692	  
North Atlantic (top left panel) and eastern North Pacific (top right panel), using only 1693	  
ensemble 1 for MRI-CGCM3. Number of TCs per year in the period 1950-2005 in 1694	  
models and observations for the North Atlantic (bottom left panel) and eastern North 1695	  
Pacific (bottom right panel). The blue box shows the 25-75 percentile range, with the 1696	  
median shown as a red line. The whiskers and red crosses show the data outside of 1697	  
middle quartiles. 1698	  

1699	  
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 1699	  

 1700	  

Figure 7. Upper panels: Comparison of observed and C180HIRAM (one realization) 1701	  
simulated hurricane tracks for the N. Atlantic and E. Pacific for 1981-2008. Middle 1702	  
panel: Comparison of observed and C180HIRAM simulated annual hurricane count 1703	  
statistics. Blue boxes show the 25-75 percentile range, with the median shown as a red 1704	  
line and the mean shown as a red star. The whiskers show the maximum and minimum 1705	  
values. The annual statistics are computed based on a 3-member ensemble mean for 1706	  
1981-2008. Lower panels: Observed and model simulated seasonal cycle (number of 1707	  
hurricanes per month) for the N. Atlantic and E. Pacific from the 3-member ensemble 1708	  
mean (1=JAN, 12=DEC) 1709	  
 1710	  
 1711	  

	  1712	  
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	  1713	  

Figure 8. Taylor diagrams for (a) El Niño and (b) La Niña composite 300 hPa 1714	  
geopotential patterns over the region from East Asia – North America. Higher 1715	  
performance (pattern correlation > 0.6, RMS difference < 13m in both (a) and (b)) 1716	  
models are indicated in red, whereas lower performance models are indicated in blue.  In 1717	  
(a) HadCM3, which falls outside of the plot, has a pattern correlation of -0.3 and RMS 1718	  
difference of 17.6 m. The points labeled “ens” in red, blue, and green represent the higher 1719	  
performance, lower performance, and total ensemble, respectively. The composites are 1720	  
normalized by the Niño 3.4 SST amplitude to focus on pattern differences independent of 1721	  
ENSO amplitude differences. The observational reference is based on the NCEP/NCAR 1722	  
reanalysis for 1950-2010, whereas the CMIP calculations are based on the full historical 1723	  
period (1850-2005) for one run of each model.	  1724	  

	  1725	  

	  1726	  

	  1727	  

	  1728	  

	  1729	  
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	  1730	  

Figure 9. Composites of (a,b,c) 300 hPa height (z300, m), (d,e,f) near surface air 1731	  
temperature (SAT, ᵒC), (g,h,i) precipitation (Precip, mm/day), and (j,k,l) SST (ᵒC) 1732	  
anomalies during DJF El Niño episodes in observations (left column), and both high 1733	  
(middle column) and low performance CMIP5 ensembles (right column) described in 1734	  
Fig. 8. The observational SAT and precipitation composites are based on the CRU TS3.1 1735	  
land near-surface temperature and precipitation datasets for 1901-2009. The z300, SAT, 1736	  
and Precip composites are normalized by the Niño 3.4 SST anomaly. Stippling in the 1737	  
observed (a) z300, (d) SAT, and (g) precipitation composites indicates anomalies that are 1738	  
statistically significant at the 5% level. 1739	  

	  1740	  
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	  1741	  

Figure 10. Composite DJF El Niño (a) precipitation (mm/day) and (b) SST (ᵒC) 1742	  
difference between the high and low performance CMIP5 ensemble described in Fig. 8.  1743	  
Stippling indicates differences that are statistically significant at the 5% level. (c) DJF 1744	  
SST climatology difference (ᵒC) between the high and low performance ensemble, and 1745	  
(d) high and (e) low performance SST climatology bias (ᵒC) for the 1951-2000 period.	  1746	  
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 1747	  

Figure 11. US winter surface air temperature regressed on the EP (top six rows) and CP 1748	  
(bottom six rows) ENSO indices from observations and the CMIP5 models. 1749	  
Observational air temperature data are from the NCEP-NCAR reanalysis and SSTs are 1750	  
from the ERSST dataset for 1950-2010. 1751	  
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 1752	  

 1753	  
Figure 12. (a) Scatter plot of pattern correlations between the regression patterns from 1754	  
the CMIP5 models and those from the observations (NCEP-NCAR reanalysis and 1755	  
HadISST dataset) for EP versus CP ENSO; (b) Scatter plot of the intensities of the EP/CP 1756	  
ENSO from the CMIP5 models and the observation (ERSST). The values shown are the 1757	  
maximum standard deviations of the EOF patterns of the two types of the ENSO 1758	  
calculated using a regression-EOF method. The blue dashed lines indicate the lower limit 1759	  
of the 95% significance interval of the observed ENSO intensities based on an F-test. 1760	  

1761	  
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 1761	  

Figure 13. The sum of the composite SST anomalies between the two phases of ENSO 1762	  
from the HadISST observations and CMIP5 coupled models. The definition of the warm 1763	  
phase and cold phase of ENSO follows that of Zhang et al. (2009). The length of data 1764	  
used in the calculation is 50 years for all the models and observations (1950-99). 1765	  

 1766	  
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 1767	  

Figure 14. The standard deviation (upper panel) and skewness (lower panel) of monthly 1768	  
Niño-3 SST anomalies from observations and CMIP5 model simulations. The length of 1769	  
data for computing the standard deviation and skewness is 50 years for the observations 1770	  
(1950–99). For the model, the standard deviation and skewness were calculated for a 50-1771	  
year moving window over 100 years of the model run for a total of 601 samples. The 1772	  
figure shows the mean of the samples and +- the standard deviation across the samples. 1773	  
Data used are the same as for Figure 13. 1774	  

 1775	  
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	  1776	  

Figure 15. Summertime wet and dry circulation patterns for the central US from the 1777	  
NCEP/NCAR reanalysis. a) and b) show, respectively, summertime precipitation 1778	  
anomalies (contours) in wet and dry years, in reference to the Great Plains precipitation, 1779	  
and the vertically integrated moisture fluxes from the surface to the top of the troposphere 1780	  
(arrows).  c) The differences between a) and b). d) and e) show the corresponding 850hPa 1781	  
geopotential height (countour) and 925hPa wind anomalies (arrows) for the wet and dry 1782	  
summer, respectively. Their differences are summerized in f).  1783	  
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	  1784	  

Figure 16. Same as Fig. 15 but for CCSM4 simulation results. 1785	  

1786	  
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	  1786	  

Figure 17. PDO SST patterns in observations and CMIP5 models. Linear regression of 1787	  
SST on the PDO index in (a) observations and (b) the CMIP5 ensemble, and (c) the 1788	  
CMIP5 minus observed PDO regression. Observations are from the HadISST dataset for 1789	  
the period between 1870 and 2009. For the CMIP5 models, the analysis period begins as 1790	  
early as 1850 and extends to 2005, and a single realization is used for each model. The 1791	  
contour interval is 0.2ᵒC in (a) and (b) and 0.1ᵒC in (c), with the zero contour omitted.  1792	  
Stippling in (c) indicates where the differences are statistically significant at the 95% 1793	  
significance level based on a two-sided t-test. (d) Standard deviation of the PDO SST 1794	  
regressions within the ensemble.  Contour interval is 0.05ᵒC. 1795	  

 1796	  

 1797	  

 1798	  

 1799	  
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1800	  
Figure 18. December-February PDO SAT and precipitation regression patterns over 1801	  
North America. Regressions of DJF SAT (a,c) and precipitation (b,d) on the PDO index 1802	  
in (a,b) observations and (c,d) the CMIP5 ensemble. The differences between the 1803	  
regression patterns (CMIP5 minus observations) are shown in (e) and (f). The contour 1804	  
interval is 0.1ᵒC for the SAT regressions (a, c, e) and 0.05 mm/day for the precipitation 1805	  
regressions (b,d,f). Stippling in (e) and (f) correspond to differences that are significantly 1806	  
different at the 95% confidence level based on a two-sided t-test. To focus on 1807	  
multidecadal variability a Butterworth 10-year low-pass filter is applied to each PDO 1808	  
index time series, which is then re-standardized and detrended. The SAT and 1809	  
precipitation anomalies are then regressed on the filtered index for each season. The 1810	  
observations are the CRU TS3.1 temperature and precipitation datasets.  1811	  
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 1812	  

 1813	  

Figure 19. The JJASON AMO index in CMIP5 models compared to observations for (a) 1814	  
the time series and (b) autocorrelations. The AMO index is defined as the the 11-year 1815	  
running mean of the detrended North Atlantic SST during the Atlantic hurricane season 1816	  
of June to November (JJASON) from the equator to 60°N, 75°W-5°W. SST observations 1817	  
are from the ERSST dataset.  1818	  

 1819	  
 1820	  

 1821	  

 1822	  
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  1823	  

Figure 20. Autumn (SON) regressions of the AMO index on SST and precipitation from 1824	  
observations (HadISSTv1.1 and CRU TS3.1), and 17 CMIP5 models for 1901-1999. The 1825	  
AMO index is the area-averaged SST anomalies over the domain (75°-5°W, 0°-60°N), 1826	  
which are detrended and then smoothed via a 11-year running mean. Regressions are 1827	  
calculated for the first ensemble member for each model; observed and simulated 1828	  
anomalies have been regridded to a 1.5°×1.5° grid for precipitation, and a 5°×2.5° grid 1829	  
for SST. Blue/red shading denotes negative/positive SST anomalies, while brown/green 1830	  
shading denotes negative/positive precipitation anomalies. Contour interval is 0.1K and 1831	  
0.02 mm day-1, respectively. 1832	  
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(a) Annual Temperature Trend (°C/decade), 1930-2004 

 

(b) Summer (JJA) Temperature Trend (°C/decade), 1930-2004 

	  

(c) Winter (DJF) Temperature Trend (°C/decade), 1930-2004 

	  

Figure 21. Observed and MME mean temperature trends (°C/decade) for North America 1833	  
(1930-2004) for (a) annual, (b) summer, and (c) winter. Observations are from the CRU 1834	  
TS3.1 dataset. The MME mean is calculated from the first ensemble member of 17 1835	  
models (BCC-CSM1.1, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-1836	  
CM3, GFDL-ESM2M, GISS-E2-R, HadCM3, HadGEM2-ES, INMCM4, IPSL-CM5A-1837	  
LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M). Eastern and 1838	  
western US regions are shown by the boxes. 1839	  

1840	  
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 1840	  
(a) Eastern US 

 

(b) Eastern - Western US 

 

 1841	  
Figure 22: 30-year running annual temperature trend for (a) the Eastern US, (b) 1842	  
difference in trend between the Eastern and Western US. Regions are defined in Fig. 21. 1843	  
Shading represents the 95% uncertainty range calculated from 17 models (see Fig. 21), 1844	  
one ensemble member from each model. Black solid line is the observation (CRU TS3.1) 1845	  
and blue solid line is the MME median. X-axis represents the start of the 30-year running 1846	  
period. For example, the trend value at 1930 represents the trend from 1930 to 1959.  1847	  

 1848	  

 1849	  

 1850	  
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Figure 23. Comparison of (a) mean DTR and (b) DTR trend for the obsevrations (CRU 1851	  
TS3.1) and MME mean of the 17 models (right; see Fig. 21) for 1951-2000. The contour 1852	  
lines are the inter-model standard deviation.  1853	  

1854	  

                                (a) 

	  
                                               (b) 
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 1854	  

 1855	  

Figure 24. Observed and MME mean annual precipitation trends (mm/decade) for North 1856	  
America (1930-2004). Observations are from the CRU TS3.1 dataset. The MME mean is 1857	  
from 17 models (see Fig. 21), 1 ensemble member from each model. Eastern and western 1858	  
US regions are shown by the boxes. 1859	  

 1860	  

1861	  
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 1861	  

 1862	  

Figure 25. 30-year running annual precipitation trend (mm/decade) for (a) the Eastern 1863	  
US, and (b) the Western US. Regions are shown in Fig. 23. The shaded region is the 95% 1864	  
uncertainty range calculated from 17 models (see Fig. 21), one ensemble member from 1865	  
each model. Black solid line is the observation (CRU TS3.1) and blue solid line is the 1866	  
MME median. X-axis represents the start of the 30-year running period. For example, the 1867	  
trend value at 1930 represents the trend from 1930 to 1959. 1868	  

 1869	  

(a) Eastern US 

 

(b) Western US 

 


